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Abstract. Copulas with a full-range tail dependence property can cover the widest

range of positive dependence in the tail, so that a regression model can be built accounting

for dynamic tail dependence patterns between variables. We propose a model that incorpo-

rates both regression on each marginal of bivariate response variables and regression on the

dependence parameter for the response variables. ACIG copula that possesses the full-range

tail dependence property is implemented in the regression analysis. Comparisons between

regression analysis based on ACIG and Gumbel copulas are conducted, showing that ACIG

is generally better than Gumbel copula when there is intermediate upper tail dependence. A

simulation study is conducted to illustrate that dynamic tail dependence structures between

loss and ALAE can be captured by using the one-parameter ACIG copula. Finally, we apply

the ACIG and Gumbel regression models respectively for a dataset from the Medical Expen-

diture Panel Survey of the United States. The empirical analysis suggests that the regression

model with the ACIG copula improves the assessment of high-risk scenarios, especially for

aggregated dependent risks.

Key words: ACIG copula, tail order, dynamic dependence, ALAE, MEPS

dataset, regression analysis.
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1 Introduction

Regression analysis with a variety of generalized linear models (GLMs, which include general-

ized additive models in our following discussion) has been proven useful in making statistical

inference on univariate distributions. In particular, it has been widely used in property and

casualty insurance companies for rate making. However, those models are mainly for pricing,

and may not be suitable for quantitative risk management. The main reason is that the pric-

ing models are chosen and the parameters are calibrated based on the explanatory variables

that take values having relatively higher possibilities. However, extreme values, although

having relatively smaller chances to occur, may have a direct impact on financial stability.

In the field of quantitative risk management, the study on tail behavior of loss distributions

has attracted more attention than ever since the most recent financial crisis starting from

2007. Among many debates about the financial crisis, limitations of Gaussian copulas have

also been discussed. We refer to Donnelly and Embrechts (2010) for the drawbacks of using

Gaussian copula for modeling credit risks.

All statistical models have certain limitations. For quantitative risk management, one ma-

jor limitation of the Gaussian copula is that it does not well capture the joint tail behavior of

large risks when there actually are clusters of large losses. More precisely, the tail dependence

parameter λ = limx→∞ P[X1 > x|X2 > x] = 0, where X1 and X2 are identically distributed

random variables and have the Gaussian copula as their dependence structure. The lack of

tail dependence can be easily fixed by using a copula that has upper tail dependence such as

the Gumbel copula and the student t copula, of which the upper tail dependence parameter

λ > 0. However, one may overreact to the issue by using copulas that have tail dependence

when the actual dependence in the upper tail is not strong enough. Therefore, we need a

copula that can capture both cases where the upper tail dependence parameter can be either

λ > 0 or λ = 0.

When a copula family is able to account for both λ > 0 and λ = 0 for positive dependence

in the tail, we refer to it as a full-range tail dependence copula; note that, here the “tail

dependence” is a generic description of dependence in the tail, not the concept discussed in

Section 2.1.10 of Joe (1997). For the latter, we will use “usual tail dependence” specifically

for the case where λ > 0. When λ > 0, it is the usual tail dependence case, and the value

of λ itself can be used to quantify the degree of dependence. However, when λ = 0, we need

more information to quantify the degree of dependence. In Hua and Joe (2011), a notion

of “tail order” is used to quantify the degree of dependence in the tails for the case where

λ = 0. Then a concept of “intermediate tail dependence” has been proposed to account for

the positive tail dependence with λ = 0.

The importance of using a full-range tail dependence copula in assessing high-risk scenar-
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ios is also suggested by the findings in Hua and Joe (2014). In a regression setting, if one

wants to conduct inference on the risk measures of the following forms E(Y1|Y2 > t,X = x)

or E(Y1|Y2 = t,X = x), where t is Value at Risk (VaR) for Y2, then the strength of tail

dependence between Y1 and Y2 conditioning on X = x becomes very important, because the

risk measures are very sensitive to the strength of tail dependence. Under such a situation,

a full-range tail dependence copula may significantly improve the modeling.

The goal of the paper is to study how a full-range tail dependence copula would be useful

in assessing tail risks in a regression setting. We will first introduce the concepts of tail

order and full-range tail dependence copulas, and a one-parameter full-range tail dependence

copula that is referred to as ACIG copula will be studied. In particular, we will compare

the ACIG copula with the commonly-used Gumbel copula, and our emphasis will be the

comparison of different upper tail behavior of these two copulas. We will illustrate that the

ACIG copula has a wider range of tail dependence than the Gumbel copula, and the ACIG

copula has less cross-validated prediction errors than the Gumbel copula under a simulation

study. Then, we will develop a copula-based regression model where the response variable is

bivariate and the dependence degrees for the bivariate response variable is allowed to change

according to the values of explanatory variables. A simulated loss-and-expense dataset will

be used to demonstrate the dynamic dependence structures between response variables and

how full-range tail dependence copula can be used in capturing the changing patterns of

tail dependence. Finally, we will conduct an empirical analysis for a Medical Expenditure

Panel Survey dataset, for which the full-range tail dependence ACIG copula can improve the

modeling for assessing high-risk scenarios.

The main contribution of the paper is the following: the concept of full-range tail de-

pendence is proposed for modeling dynamic tail dependence patterns, which overcomes the

problem of the existing models being either only tail independent or only tail dependent,

and a one-parameter full-range tail dependence copula has been studied and implemented

in regression models that can improve the modeling for assessing high-risk scenarios. The

regression model with a full-range tail dependence copula can improve risk assessments for

not only marginal but also aggregated losses.

The paper is organized as the following: In Section 2, basic concepts of tail order and

full-range tail dependence copula will be introduced. In Section 2.3, we use a cross-validated

prediction error to compare the model performance between ACIG and Gumbel copulas.

Regression models using a full-range tail dependence copula will be constructed in Section 3.

A simulation study using the ACIG copula for modeling the dynamic dependence structures

between auto insurance losses and expenses is reported in Section 4. In Section 5, we use a

Medical Expenditure Panel Survey dataset to demonstrate the implemented regression model
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with the ACIG copula, and its comparison to the Gumbel model. Section 6 will conclude the

paper, and some technical arguments for implementing the models are reported in Section 7.

2 Tail order and full-range tail dependence

2.1 Full-range tail dependence

For a random vector (X1, . . . , Xd) that has a joint cumulative distribution function (cdf) F

and univariate cdf Fi, i = 1, . . . , d, there is a copula function C : [0, 1]d → [0, 1] such that for

any x = (x1, . . . , xd) on the support of F , F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). When Fi’s

are continuous, the copula C is uniquely determined. Use Ĉ as the corresponding survival

copula of C; that is, Ĉ(u1, . . . , ud) = C(1− u1, . . . , 1− ud), where C is the survival function

of C, and defined as C(u1, . . . , ud) := 1 +
∑
∅6=I⊆Id(−1)|I|CI(ui, i ∈ I) with CI the copula for

the I-marginal, Id := {1, . . . , d}, and |I| the number of elements in the set I; when |I| = 1,

the notation CI(ui) = ui, i ∈ I.

The upper tail behavior of C is simply the lower tail behavior of Ĉ, and vice verse. Since

the upper tail is usually relevant for risk assessment if the random variables represent amounts

of losses, we are only interested in the upper tail of a copula in this paper. Therefore, in

what follows, we consider the lower tail of Ĉ when defining relevant concepts about the tail,

and similar concepts can also be defined for the upper tail of Ĉ.

If Ĉ(u, . . . , u) ∼ λu with 0 < λ ≤ 1, as u→ 0+, then C has usual upper tail dependence

with the dependence parameter being λ, where “∼” means asymptotically equivalence; that

is, g(x) ∼ h(x), x → x0 ⇐⇒ limx→x0 g(x)/h(x) = 1. If Ĉ(u, . . . , u) ∼ uκ`(u), as u → 0+,

with ` a slowly varying function1 and 1 ≤ κ, then κ is referred to as the upper tail order of

the copula C. Clearly, if Ĉ has usual upper tail dependence, then its upper tail order κ = 1

and λ = limu→0+ `(u). A larger value of κ indicates a weaker dependence in the tail. When

there is usual tail dependence, that is, when λ > 0, we use the value of λ to quantify the

degree of dependence in the tail; when κ > 1, thus λ = 0, we use the value of κ to quantify

the degree of dependence in the tail. When 1 < κ < d, the corresponding tail of C is said to

have intermediate tail dependence with certain regularity conditions. For details about the

notion of tail order, we refer the interested reader to Hua and Joe (2011, 2013).

When a permutation symmetric copula family C is able to account for 1 ≤ κ ≤ d, we refer

to it as a full-range tail dependence copula. For example, for a bivariate Gaussian copula

with correlation coefficient |%| 6= 1, the tail order 1 < κ = 2/(1+%) <∞ (Hua and Joe, 2011,

Example 1), and it is not a full-range tail dependence copula because κ 6= 1. In the existing

1A measurable function g is said to be slowly varying at x0 if for any t > 0, limx→x0
g(tx)/g(x) = 1. For

example, log(x) is slowly varying at the infinity.
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parametric copula families, there are only a few non-trivial copula families that have the

full-range tail dependence property. One example is the Archimedean copula constructed by

the Laplace Transform (LT) of an inverse Gamma distribution (referred to as ACIG copula,

(Hua and Joe, 2011, Example 4)). Another example is the Archimedean copula constructed

by the mixture of generalized Gamma and simplex (referred to as GGS copula, (Hua, 2013,

Example 2)).

In the next two subsections, we will focus on the ACIG copula and its comparisons with

the Gumbel copula, because the ACIG will be more useful than the GGS copula for modeling

the dependence structures for the datasets to be analyzed in this paper. We refer to Hua

(2013) for details about the GGS copula and its applications in modeling the dependence

between loss frequency and loss severity.

2.2 ACIG copula

An Archimedean copula can be constructed by an Archimedean generator ψ as the following.

C(u1, . . . , ud) = ψ(ψ−1(ud) + · · ·+ ψ−1(ud)), ui ∈ [0, 1], i = 1, . . . , d.

The Archimedean generator ψ can often be chosen as an LT of a positive random variable;

that is, ψ(s) =
∫∞
0
e−sxF (dx), where F is the cdf of a positive random variable X. Then,

ψ(0) = 1, ψ(∞) = 0, and ψ is completely monotone. We refer to Joe (1997) for details about

constructing Archimedean copulas based on the LT of a positive random variable.

Based on Example 4 of Hua and Joe (2011), let Y = X−1, and X be distributed as

Gamma(α, 1), where α is the shape parameter. Then the LT of the inverse Gamma random

variable Y is

ψ(s;α) =
2

Γ(α)
sα/2Kα(2

√
s), s ≥ 0, α > 0, (1)

where Kα is the modified Bessel function of the second kind. For the bivariate copula

C(u, v) := ψ(ψ−1(u) + ψ−1(v)), the density is

c(u, v) = ψ′′(ψ−1(u) + ψ−1(v)) · [ψ′(ψ−1(u))]−1 · [ψ′(ψ−1(v))]−1. (2)

In order to calculate the density, we need to find ψ′, ψ′′ and ψ−1. The first two can be
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obtained analytically as the following, and ψ−1 can be evaluated numerically.

ψ′(s) = −2s(α−1)/2Kα−1(2
√
s)/Γ(α)

ψ′′(s) = 2s(α−2)/2Kα−2(2
√
s)/Γ(α)

Here we comment that, for data analysis with Archimedean copulas that are constructed by

strictly decreasing ψ, as long as derivatives of the generator ψ can be obtained analytically,

the copula is often useful for real applications, because a numerical method is usually very

efficient and fast for getting ψ−1 for such a strictly decreasing function ψ.

Figure 1 illustrates the normalized contour plots of the ACIG copula. To get the normal-

ized contour plots, we transform each copula marginal separately to the standard Normal;

that is, transforming (u, v) by (Φ−1(u),Φ−1(v)), and then plotting the pairs of the latter,

where Φ is the cdf of the standard Normal distribution. Based on Figure 1, we can clearly

notice that ACIG copula is able to incorporate a much wider range of dependence in the

upper tail with a single dependence parameter α. The nice property of this copula provides

a suitable tool to modeling dynamic dependence between loss and expense, conditioning on

a variety of values of the covariates.

Figure 1: Normalized contour plots of ACIG copula
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2.3 Comparisons

For the well known loss and ALAE dataset studied in papers such as Frees and Valdez (1998),

and Klugman and Parsa (1999), Gumbel copula can be used to fit the dependence structures.

Figure 2 shows normalized contour plots for Gumbel copula. Based on the contour plots for

ACIG and Gumbel copulas, when there is usual upper tail dependence, the two copulas look

very similar; however, when the dependence becomes weaker, the Gumbel copula still has a

hump in the upper tail while the upper tail of ACIG copula is able to incorporate a relatively

weaker dependence structure.

Figure 2: Normalized contour plots of Gumbel copula
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In order to compare these two copulas regarding their capacity for fitting a variety of

dependence in the upper tail, we apply the cross-validated prediction errors (CVPE) proposed

in Acar et al. (2011) as a criteria. For a random sample (ui, vi), i = 1, . . . , n, where 0 ≤
ui, vi ≤ 1, we use copula C to fit the sample. The leave-one-out CVPE for the copula C is

then defined as follows.

CVPE(C) =
n∑
i=1

[{
ui − Ê(−i)(Ui|vi)

}2

+
{
vi − Ê(−i)(Vi|ui)

}2
]
,
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where

Ê(−i)(Ui|vi) =

∫ 1

0

uc(u, vi|θ̂(−i))du, i = 1, . . . , n,

with c(·, ·|θ̂(−i)) the estimated copula density when the ith observation (ui, vi) is removed.

Now we are comparing the performance of these two copulas for fitting simulated datasets

generated from ACIG and Gumbel copulas, respectively. Three different levels of dependence

are considered in terms of Blomqvist’s β; a higher value of β indicates a stronger positive

dependence. Blomqvist’s β of a bivariate copula C is defined as β = 4 × C(1/2, 1/2) − 1.

Then β1 = 0.1, β2 = 0.3, and β3 = 0.5 are considered, and the corresponding values of

parameters for the ACIG copula are 4.66639, 1.20143, 0.50171, and for the Gumbel copulas are

1.11453, 1.43406, 1.99664, respectively. We generate datasets from Gumbel copulas (denoted

as M0 = G), and then fit the datasets with Gumbel and ACIG copulas (denoted as G and

A) and calculate the leave-one-out CVPEs, respectively. We also generate datasets from

ACIG copulas, and then fit the datasets with Gumbel and ACIG copulas and calculate the

CVPEs, respectively again. We repeat the procedures 50 times, and the means and standard

deviations of those CVPEs are reported in Table 1 for small sample size with n = 100, and

for large sample size with n = 1, 000, respectively.

Table 1: Cross-validated prediction errors (CVPE) for ACIG and Gumbel copulas

n = 100 n = 1000
M0 = G M0 = A M0 = G M0 = A

Blomqvist β G A G A G A G A
β1 = 0.1 CVPE 12.02 11.65 13.89 12.66 120.16 118.09 134.43 122.77

s.d. 2.45 3.19 2.15 2.34 8.35 12.82 8.94 8.64
β2 = 0.3 CVPE 5.55 4.66 6.28 5.48 55.56 45.70 65.06 56.03

s.d. 1.29 1.07 1.51 1.33 4.63 3.72 4.83 4.30
β3 = 0.5 CVPE 1.90 1.88 1.82 1.83 19.19 19.14 19.55 19.36

s.d. 0.49 0.36 0.51 0.37 1.89 1.35 1.92 1.47

Based on Table 1, ACIG copula is generally better or comparable to Gumbel copula. For

the ACIG copula, β1 = 0.1, 0.3, 0.5 correspond to tail quadrant independence, intermediate

tail dependence and usual tail dependence, respectively. When dependence in the upper

tail is not as strong as the usual tail dependence case, ACIG copula generally outperforms

Gumbel copula in the sense of the CVPE. In particular, for the intermediate tail dependence

case, ACIG copula is clearly better. As expected, when the dependence in the upper tail is

relatively stronger, it is hard to distinguish the ACIG copula from the Gumbel copula.
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3 Regression for dependence

3.1 Dynamic dependence

Dependence modeling between loss and expense has been a popular research topic in actuarial

science since the publication of Frees and Valdez (1998), and Klugman and Parsa (1999).

Copulas have been applied to model such non-Gaussian dependence relationships between

loss and certain associated expenses, although there were no covariates involved probably

due to the lack of relevant datasets. For regression on bivariate response variables, the

dependence parameter for the response variable is considered by papers such as de Leon

and Wu (2011), and Czado et al. (2011); the latter models the dependence between loss

frequency and loss severity, where the marginals are assumed to depend on the values of

covariates but the dependence parameter is assumed to be homogeneous. Acar et al. (2011)

applies a nonparametric approach for calibrating the dependence parameters according to

the covariates, where the dependence parameter is allowed to change along the covariates.

Through a preliminary data analysis, we observe that if the dependence patterns condi-

tioning on different values of covariates appear to be very different, then the model fitting

could be improved by adding a regression analysis that accounts for the dynamic dependence

patterns. From bodily injury loss (LOSS) and its allocated loss adjustment expense (ALAE)

of a certain car insurance dataset, we noticed that the dependence structures between LOSS

and ALAE change significantly for different duration of investigation of the loss events. When

the duration of investigation is longer, the dependence in the upper tail becomes stronger.

It makes sense as a longer duration of investigation may indicate a more complicated loss

event and investigation, and thus more expense such as attorney fees could be involved, so

that the dependence between LOSS and ALAE becomes stronger. Due to confidentiality, we

only use a simulated dataset in Figure 3 to illustrate the idea, and the patterns look similar

to real datasets. An empirical analysis based on real dataset will be conducted in Section 5,

where the dataset is from the Medical Expenditure Panel Survey of the United States.

The changing dependence pattern indicates that the local dependence structure in the

upper tail may cover a very wide range from independence to stronger positive dependence.

However, the commonly used copula families such as the Gumbel copula can only account

for a very narrow range of tail dependence pattern, that is the usual tail dependence. To

overcome this obstacle, we need to consider a copula family that has a more flexible upper

tail with less dependence parameters that can be linked to the covariates.
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3.2 Regression models

The proposed model generally can be used to model response variables of any dimension.

Now we use a bivariate case to illustrate the idea. Conditional marginal distributions of

response variables Y1 and Y2 are modeled by GLMs or other univariate regression models,

respectively. They are denoted as F1(·|X1 = x1) and F2(·|X2 = x2), respectively. Note that,

the set of covariates X1 and X2 are not necessarily the same. But the covariates for the

dependence parameter should also be contained in the covariates for both response variables.

In what follows, we use the same set of covariates X for notational convenience.

Let Yi|X = x, i = 1, 2 be continuous random variables conditioning on X = x with

cumulative distribution functions Fi|X(·|x), i = 1, 2. Then the copula of those Yi|X = x, i =

1, 2 is referred to as the conditional copula of Y ′i s given the covariates X = x. A bivariate

one-parameter copula such as the ACIG copula that has full-range upper tail dependence

will be used to model the conditional dependence between the response variables. Then the

conditional joint cumulative distribution function is

F (y1, y2|α(x),θ1(x),θ2(x)) = C(F1(y1|θ1(x)), F2(y2|θ2(x))|α(x)). (3)

where C(·, ·|α(x)) is the conditional copula, θi(x), i = 1, 2 are the parameters for the two

marginals respectively, and α(x) is the dependence parameter that is also linked to the

covariates x.

Since the dependence parameter α of ACIG copula is positive, we use the log(·) as the

link function. Moreover, certain nonlinear functionals such as natural cubic splines (ns) will

be applied for continuous covariates as we do not know the functional relationship between

the covariates and the dependence parameter α. That is,

log(α(x)) =
k∑
i=1

nsi(xi) + γ0 +

p∑
i=k+1

γixi,

where x1, . . . , xk are continuous covariates, xk+1, . . . , xp are categorical covariates. The forms

of θi(x), i = 1, 2 depend on how the marginal regression models are chosen.

With specified marginal parametric distributions F1, F2, and parametric copula C, we can

get the density function of (3) as the following

f(y1, y2|α(x),θ1(x),θ2(x)) = c(F1(y1|θ1(x)), F2(y2|θ2(x))|α(x)) · f1(y1|θ1(x)) · f2(y2|θ2(x)),

(4)

where c, f1 and f2 are the corresponding conditional density functions of the copula and
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the marginals. Then, the coefficients β’s associated with the natural splines (ns) and the

coefficients γi’s for the discrete variables can be estimated by maximizing the following full

likelihood function.

L(θ1,θ2, α|y1, y2,x) =
n∏
i=1

f(y1i, y2i|α(xi),θ1(xi),θ2(xi)),

where (y1i, y2i,xi) is the ith observation of the random sample of size n.

4 Simulation study

In this section, we apply the regression model mentioned in Section 3.2 for a simulated

loss-and-ALAE dataset to illustrate the idea of using a full-range tail dependence copula to

account for the dynamic dependence between LOSS and ALAE along covariates.

We generate a random sample of size n = 2400 from the ACIG copula, and the sample

size for each month is 50. The dependence parameter is assumed to be a function of the

claim duration in months (x ∈ {1, . . . , 48}) according to the following formula, and Figure 3

is the normalized scatter plots for each period of 6 months.

α(x) = 4.62− 3.60× 10−1x+ 1.33× 10−2x2 − 2.30× 10−4x3 + 1.54× 10−6x4. (5)

Figure 3: Dependence in the upper tail becomes stronger as duration increases
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We now link the dependence parameter α of the ACIG copula to the covariate “Duration”

X. Since α has to be positive, we use log() as the link function. Natural cubic spline is used

for the duration as we do not know the functional relationship between α and X. Then,

log(α(x)) = ns(x) = β1b1(x) + · · ·+ βpbp(x),

where b1(x), . . . , bp(x) are the spline basis and βi’s are the coefficients to be estimated. Let

ui, vi, i = 1, . . . , n be the random sample generated by the ACIG copula. The likelihood

function L and the loglikelihood function l in terms of the Archimedean generator ψ are the

following.

L(β1, . . . , βp|ui, vi, i = 1, . . . , n) =
n∏
i=1

c (ui, vi|αi = exp(β1b1(xi) + · · ·+ βpbp(xi)) .

l(β1, . . . , βp|ui, vi, i = 1, . . . , n)

=
n∑
i=1

{
logψ′′(ψ−1(ui) + ψ−1(vi))− log[ψ′(ψ−1(ui))]− log[ψ′(ψ−1(vi))]

}
.

We assigned one knot at the median of the “duration” for the natural cubic spline. Then

we can fit a curve between the dependence parameter α and “duration” as in Figure 4. There

are 100 gray lines used to indicate how variant the estimated α-line is. The gray lines were

generated based on the simulated coefficients for the natural cubic spline, and the values of

them were randomly generated by a multivariate Normal distribution with the mean being

the MLEs of the β′is, and the covariance matrix being the inverse of the Hessian matrix.

Based on Figure 4, we find that when the duration is small (≤ 10 months), the dependence

in the upper tail is closed to independence (α ≥ 2); when the duration is large (≥ 24 months),

the upper tail appears to be of the usual tail dependence; between 10 months and 24 months,

intermediate tail dependence exists. This pattern cannot be captured by using a commonly-

used copula, say, the Gumbel copula.

5 Empirical study

In Section 4, a simulation study was conducted to show that the full-range tail dependence

copula can be used to account for the dynamic tail dependence patterns. In this section, we

are going to apply the method for a Medical Expenditure Panel Survey data of the United

States (MEPS), where both marginals and dependence are linked to covariates.

The MEPS data to be analyzed is a subset of the 2010 Full Year Consolidated Data.

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
Reserved

12



Figure 4: Upper tail dependence becomes stronger as duration increases
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The bivariate response variables are for emergency room visits, including expense associ-

ated with separately billing doctors (ERDEXP10: Y1) and expense associated with facilities

(ERFEXP10: Y2). We consider covariates such as age (AGELAST) and insurance coverage

(INSCOV10). We exclude all the records where at least one of the response variables is zero.

Alternative methods for handling zero-inflated response variables include a logistic regression

on the occurrence of zeros, and zero-inflated models such as zero-inflated Poisson and zero-

inflated negative binomial regression. The sample size we are using is 2, 381. Descriptive

statistics about the variables involved are in Table 2. A normalized scatter plot of the data

is given in Figure 5, where each margin is transformed to be distributed as the standard

Normal distribution; that is, to transform each pair of observation (y1i, y2i), i = 1, . . . , 2381,

to (Φ−1(rank(y1i)/2381.5),Φ−1(rank(y2i)/2381.5), where Φ−1 is the inverse of the cdf of the

standard Normal distribution. Based on Figure 5, we find that the dependence in the upper

tail is stronger than that in the lower tail.

Table 2: Summary of the variables

Min 1st quantile Median Mean 3rd quantile Max
ERDEXP10 1 65 143 294.5 306 7579
ERFEXP10 1 222 520 1255 1245 50900
AGELAST 0 17 36 37.87 58 85

INSCOV10 (#obs ) Any private (1): 1126 Only public (2): 1064 Uninsured (3): 191

We first fit the two univariate response variables separately using a univariate regression.

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
Reserved
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Figure 5: Normalized scatter plot for ERDEXP10 and ERFEXP10
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Among many different univariate distributions, the generalized student t distribution with

location and scale parameters fits the log-transformed data very well. If the random variable

X follows a standard student t distribution with ν the degree of freedom, then Y := µ +

σX follows the generalized student t distribution with µ the location parameter and σ the

scale parameter. Note that, the variance of Y is then σ2(ν/(ν − 2)) when ν > 2. We

choose some significant covariates to fit the data and their maximum likelihood estimates

are reported in Table 3, and the standard errors are obtained from the observed information

matrix (the inverse of the Hessian matrix). For univariate regression analysis, one can use

an R package gamlss (Rigby and Stasinopoulos, 2005), which implements many univariate

distributions including the generalized student t distribution. The Normalized QQ plots

of quantile residuals are applied for diagnosis of each marginal regression (see Figure 6).

We refer to Dunn and Smyth (1996) for detailed procedures on implementing the QQ plots

for quantile residuals. By Dunn and Smyth (1996), when the parameters are consistently

estimated, the quantile residuals converge to the standard normal distribution. The QQ

plots in Figure 6 suggest that the generalized student t distribution fits the data very well.

Note that, in the following, all estimates and model comparisons reported are for response

variables that are transformed by the natural logarithm.

After fitting the univariate models, one can use the estimates of the coefficients of the uni-

variate regression models as the initial values for the coefficients used in the copula regression

models. Then, the inference functions for margins (IFM) method can be used to estimate

the coefficients associated with the covariates that are linked to the dependence parameter.

That is, transform the response variables respectively into their corresponding probabilities

derived from the fitted marginal cumulative distribution functions, and then fit a copula for

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
Reserved
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Figure 6: Normalized QQ plots of quantile residuals for generalized student t regression on
marginals
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those transformed data. This method is fast, and can provide good initial values for the

dependence parameter when maximizing a full likelihood of both marginals and dependence

structures. For more details about the IFM method, we refer to Joe (1997) and the reference

therein. We use the IFM method to locate initial values for the maximization, and a full

likelihood method is then used to estimate the parameters for marginals and for the copulas

simultaneously. The scale parameters obtained from the marginal regression are kept for the

copula regression models, since the scale parameters should not affect the copula dependence

structures, and this also makes computation faster and more stable. In practice, one can also

consider using different location parameters than those obtained from marginal regressions.

To demonstrate how covariates can be linked to the dependence parameter, we use natural

cubic splines of the “age” variable to allow flexible relationships between “age” and the

dependence parameter. We choose 33.3% and 66.7% percentiles of the age variable as two

knots for the natural cubic spline, and there are four coefficients βi, i = 1, 2, 3, 4 to be

estimated which are used to approximate the relationship between the covariate “age” and

the dependence parameter of the copula. The maximum likelihood of the coeficients are

reported in Table 3, and the standard errors (s.e.) are derived from the inverse of the

Hessian matrix.

Figure 7 is the estimated relationship between age and the dependence parameters for

ACIG and Gumbel models, respectively. Based on the plots, the relationship is nonlinear,

and both ACIG and Gumbel copulas suggest that the dependence between expense associated

with separately billing doctors and expense of facilities become stronger as one gets older.

In order to compare the ACIG regression and the Gumbel regression models, we can

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
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Table 3: Estimates for ACIG, Gumbel and marginal regression models

ACIG s.e. Gumbel s.e. Marginal s.e.
ERD (Intercept) 5.004 0.050 5.000 0.049 5.000 0.050

age 0.007 0.001 0.007 0.001 0.007 0.001
ins2 -0.595 0.047 -0.585 0.047 -0.589 0.048
ins3 -0.248 0.093 -0.241 0.090 -0.260 0.091
ln(ν) 1.847 0.093 1.878 0.092 1.919 0.146
ln(σ) -0.008 – -0.008 – -0.008 0.026

ERF (Intercept) 6.152 0.054 6.155 0.054 6.144 0.054
age 0.012 0.001 0.012 0.001 0.012 0.001
ins2 -0.703 0.052 -0.699 0.051 -0.679 0.052
ins3 -0.123 0.098 -0.136 0.097 -0.099 0.097
ln(ν) 2.572 0.167 2.516 0.155 2.716 0.272
ln(σ) 0.129 – 0.129 – 0.129 0.023

Dependence β1 0.226 0.241 -1.122 0.263 – –
β2 0.160 0.221 -0.657 0.237 – –
β3 0.813 0.263 -2.569 0.258 – –
β4 -0.557 0.247 0.369 0.247 – –

Figure 7: Upper tail dependence is fluctuated: both ACIG and Gumbel capture the dynamic
structure, and ACIG can even capture the intermediate tail dependence cases.
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apply the Vuong test (Vuong, 1989) for these two unnested models. The test statistic is the

following

Z :=

√
n×m√∑n

i=1(mi −m)2
,

where n is the sample size, mi = lAi − lGi , i = 1, . . . , n, the difference between the pointwise

loglikelihood of the ACIG and Gumbel models, and m = 1
n

∑n
i=1mi. The test statistic Z is

asymptotically distributed as a standard Normal distribution when n→∞. For this dataset,

Z = −0.086, which suggests that there is no significant difference between ACIG and Gumbel

models regarding the overall fitting; these two models are quite similar in the sense of the

Vuong test. However, for assessing high-risk scenarios where risks occur in the upper tails of

the distributions, a criteria for the overall fitting may not be suitable in suggesting a better

model. To this end, one criteria we can use is the mean square errors (MSE) beyond a certain

percentile. If ŷi, i = 1, . . . , n are the predicted values and yi, i = 1, . . . , n are the observed

values, an MSE beyond a p-percentile (p ∈ [0, 1]) can be defined as

MSEp =
1

|Ip|
∑
i∈Ip

(ŷi − yi)2,

where Ip := {i ∈ {1, . . . , n} : yi > VaRp(yi, i = 1, . . . , n), the p-percentile of the yi’s}, and

|Ip| is the number of elements in the index set Ip. The value of MSEp suggests how well a

model fits the tail beyond the p-percentile.

For this dataset, although the Vuong’s test cannot suggest a better model, we can use the

MSEp to compare the models and conclude that the ACIG regression model can better model

the upper tail and lead to a lower MSEp as p is sufficiently large. The results are reported in

Table 4, from which we find that: (1) the ACIG model is generally better than the Gumbel

model in assessing the high-risk scenarios, and the advantage becomes more clear when p

is relatively larger; (2) regression models with ACIG can improve the fitting of upper tails

for each marginals, which justifies the benefit of combing two univariate regression models

using an appropriately chosen copula; (3) the advantage of ACIG becomes relatively more

significant when assessing the aggregated dependent risks.

Note that, according to MPEp, the improvement of the Gumbel model over the inde-

pendent model is small. This suggests that the assessment of the sum of the two response

variables in the dataset is not very sensitive to the dependence structures between the re-

sponse variables. It may happen because the assessment depends not only on the dependence

structure but also on the marginals. That said, the improvement of the ACIG model over the

Gumbel model is relatively more significant, although the difference of mean square errors

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
Reserved
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is not large in absolute values. The improvement in modeling the upper tail is probably

due to the full-range tail dependence property of the ACIG copula, so that the upper tail

can be better taken care of. Since the two response variables are dependent on each other,

and their dependence relations may not be completely explained by available covariates, a

proper modeling of their dependence structure can help better explain the behavior of each

individual response variable as well.

Table 4: MSEp for ACIG, Gumbel and marginal models. The MSEp for the ACIG model is
generally lower, especially for assessing the sum of the expenses.

p 0.1 0.3 0.5 0.7 0.9 0.95 0.99 0.995 0.999
# obs 2142 1666 1190 714 238 118 24 12 3

ERD ACIG 0.92 0.93 1.23 1.93 4.12 6.00 11.98 13.55 14.27
Gumbel 0.93 0.94 1.24 1.96 4.16 6.04 12.05 13.63 14.35

Indep. 0.93 0.95 1.25 1.97 4.17 6.06 12.10 13.68 14.35
ERF ACIG 1.13 1.15 1.48 2.30 4.57 6.36 10.86 12.66 17.60

Gumbel 1.13 1.15 1.49 2.31 4.59 6.39 10.91 12.71 17.70
Indep. 1.13 1.16 1.49 2.33 4.63 6.43 10.93 12.74 17.65

ERD ACIG 3.08 3.05 3.88 5.99 12.59 17.80 33.56 40.76 57.56
+ Gumbel 3.08 3.07 3.92 6.05 12.72 17.95 33.78 40.98 57.92

ERF Indep. 3.08 3.07 3.94 6.09 12.79 18.04 33.86 41.07 58.00

We can use the QQ plot of quantile residuals (Dunn and Smyth (1996)) to evaluate the

fitting of the quantity of interest. We now consider the QQ plot for the sum of ERDEXP10

and ERFEXP10. Let S
d
= Y1+Y2, where Y1 and Y2 are continuous random variables supported

on (−∞,∞). Let F be the cdf of S, F1 and F2 be the cdfs for Y1 and Y2, respectively, and

C(u1, u2) be the copula for Y1 and Y2. Then

F (s) =

∫ 1

0

C1|2
(
F1(s− F−12 (u)), u

)
du (6)

where C1|2(u1, u2) = ∂C(u1, u2)/∂u2 = ψ′(ψ−1(u1) + ψ−1(u2))/ψ
′(ψ−1(u2)).

Based on (6) and the estimates of the parameters for the copula and the marginals, we

can evaluate the estimated F̂ (s). Then, for each pair of observed response variables, we

can calculate the sum of the two values, denoted as si, i = 1, . . . , n, where n is the sample

size. Then plug si’s into zi = Φ−1(F̂ (si)) to get zi’s. Plotting zi’s against the standard

Normal distribution leads to the normalized QQ plot of quantile residuals for the sum of Y1

and Y2. For a regression setting, the cdf F , copula C and the marginal distributions in (6)

can be simply replaced by their conditional versions that are conditioning on the values of

covariates, and the QQ plot still works. We refer to Dunn and Smyth (1996) for more details.

The integration in (6) can be calculated numerically.

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
Reserved
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The normalized QQ plots of the quantile residuals for the sum of ERDEXP10 and ER-

FEXP10 are in Figure 8, based on which one can find that: (1) the overall performance of

ACIG and Gumbel models are similar; (2) the regression model based on the ACIG copula

outperforms in the upper tail where risks occur, while the Gumbel model leads to a heavier

right tail of the sum, thus overestimating the losses; (3) the cost of the better fitting in the

upper tail for the ACIG model is the relatively worse fitting in the lower tail; however the

lower tail is not important for the purpose of risk assessment.

Figure 8: Normalized QQ plots of quantile residuals for ERD+ERF
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6 Concluding remark

The research work was motivated by observing dynamic dependence structures between loss

and ALAE of auto bodily injury insurance claim datasets. When covariates are available,

one can use the covariates to explain not only the marginals but also the dependence struc-

ture itself. Because the dependence in the upper tail can be relatively weaker or stronger

conditioning on different values of covariates, it is better to use a copula that has the widest

range of dependence in the upper tail to model the dependence structure between these two

response variables, and let the data explain how strong the dependence is. The commonly-

used Gumbel copula only has the usual upper tail dependence. In other words, no matter

what the degree of dependence in the upper tail of the data is, a fitted Gumbel copula always

suggests a relatively stronger local dependence in the upper tail. To this end, ACIG is a good

candidate model because the upper tail is very flexible, and the only dependence parameter of

the copula simply captures the most important information of our interest – the dependence

in the upper tail, which makes the difference of the overall dependence structures.
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A statistical criteria based on the overall fitting may not be appropriate for comparing

models used for assessing high-risk scenarios. For the empirical example, the regression model

based on the ACIG copula, although does not outperform in overall fitting, has better fitting

for the upper tail, especially when it is used for assessing the tail risk of aggregated dependent

losses.

Dependence between the response variables may be well explained by the covariates

through their effects on the marginals. When the covariates cannot explain the dependence

between response variables completely through their effects on the marginals, a regression on

dependence parameters could become useful. Moreover, a strong tail dependence structure

that can be observed marginally without conditioning on any covariates may still need a rel-

atively weaker tail dependence copula to model when covariates are available. For example,

the aforementioned well known dataset of loss and ALAE studied in the actuarial literature

appears to have relatively stronger upper tail dependence. However, if covariates are avail-

able for the dataset, then the relatively stronger upper tail dependence could be partially

explained by some common effects of the covariates on the marginals, and then a weaker tail

dependence copula could be necessary. To this end, a full-range tail dependence copula such

as the ACIG copula becomes useful. Depending on how much tail dependence that can be

partially explained by covariates, the copula used to account for the dependence in the tails

should be flexible enough to capture the dynamic tail dependence structures, which could be

very weak or very strong.

The regression model can also be extended to the case where response variables have

more than two dimensions. Then a critical task is to model the dependence between the

response variables appropriately, which is often challenging when the dimension becomes

large. Dependence modeling for high-dimensional random variables are nowadays under

active development. To name a few of the techniques, we refer the interested reader to Vine

copula (Bedford and Cooke, 2002; Kurowicka and Joe, 2011), factor copula (Krupskii and

Joe, 2013; Oh and Patton, 2012), and copulas implemented in probabilistic graphical models

(Elidan, 2013).

7 Details about numerical issues

When implementing a new statistical model, the computation speed is often important. The

R functions (with C routines) for the regression models with ACIG copula and with Gumbel

copula have been implemented. After implementing the ACIG copula using C codes, the

speed of calculations for the ACIG copula becomes much faster, and the overall performance

is satisfactory for dealing with real applications.

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
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In what follows, we present some numerical details that were considered when implement-

ing the models. In order to improve the speed for functions used for the ACIG copula, C

codes have been used for those time-consuming calculations.

7.1 ACIG copula

1. To get the inverse of the LT of inverse Gamma, we take a natural logarithm for both

sides of ψ(s) = t for 0 < t ≤ 1, and then use a Newton’s method to find the root. The

reason is that a logarithm of a gamma function can handle large arguments while the

gamma function itself often has numerical errors for large arguments.

ψ(s;α) =
2

Γ(α)
sα/2Kα(2

√
s), s ≥ 0, α > 0.

Therefore, it remains to solve

g(s) :=
α

2
ln(s) + ln(Kα(2

√
s))− ln(t)− ln(Γ(α)) + ln(2) = 0.

Also,

g′(s) :=
α

2s
− Kα−1(2

√
s) +Kα+1(2

√
s)

2
√
sKα(2

√
s)

=
α

2s
− exp{ln(Kα−1(2

√
s))− ln(2

√
s)− ln(Kα(2

√
s))}

− exp{ln(Kα+1(2
√
s))− ln(2

√
s)− ln(Kα(2

√
s))}.

Here the functions lnKα() and ln Γ() can handle relatively larger arguments and are

more stable numerically.

2. For the joint density function of F1 and F2 where the dependence is modeled by the

ACIG copula C, since

ψ′(s) = −2s(α−1)/2Kα−1(2
√
s)/Γ(α);

ψ′′(s) = 2s(α−2)/2Kα−2(2
√
s)/Γ(α),

letting s := ψ−1(F1(x1)) + ψ−1(F2(x2)), s1 := ψ−1(F1(x1)) and s2 := ψ−1(F2(x2)), we

c© 2013 Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries, All Rights
Reserved
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have

ln f(x1, x2) = lnψ′′(s) + ln f1(x1) + ln f2(x2)− ln(−ψ′(s1))− ln(−ψ′(s2))

= lnKα−2(2
√
s)− lnKα−1(2

√
s1)− lnKα−1(2

√
s2)

+
α− 2

2
ln(s)− α− 1

2
[ln(s1) + ln(s2)]

+ ln f1(x1) + ln f2(x2)− ln(2) + ln Γ(α),

where lnKα() and ln Γ() can handle relatively larger arguments and are more stable

numerically.

3. For C1|2(u1, u2), assuming s1 = ψ−1(u1), s2 = ψ−1(u2), and s = s1 + s2, we obtain its

logarithm as

logC1|2(u1, u2) = log(−ψ′(s))− log(−ψ′(s2))

=
α− 1

2
(log(s)− log(s2)) + logKα−1(2

√
s)− logKα−1(2

√
s2)

7.2 Gumbel copula

1. For the Gumbel copula, the LT ψ has the following properties.

ψ(s) = exp{−s1/θ}, θ ≥ 1;

ψ′(s) = − exp{−s1/θ}s1/θ−1/θ, θ ≥ 1;

ψ′′(s) = exp{−s1/θ}
(
s1/θ−1/θ

)2 − exp{−s1/θ}(1/θ − 1)s1/θ−2/θ, θ ≥ 1;

ψ−1(s) = (− ln(s))θ, θ ≥ 1.

Then, letting s := ψ−1(F1(x1))+ψ−1(F2(x2)), s1 := ψ−1(F1(x1)) and s2 := ψ−1(F2(x2)),

we have

ln f(x1, x2) = lnψ′′(s) + ln f1(x1) + ln f2(x2)− ln(−ψ′(s1))− ln(−ψ′(s2))

= −s1/θ + ln
[
s2/θ−2/θ2 − (1/θ2 − 1/θ)s1/θ−2

]
+ ln f1(x1) + ln f2(x2)

− ln(F1(x1)) + 2 ln(θ)− (1− θ)[ln(− ln(F1(x1)))]

− ln(F2(x2))− (1− θ)[ln(− ln(F2(x2)))].

2. For C1|2(u1, u2), assuming s1 = ψ−1(u1), s2 = ψ−1(u2), and s = s1 + s2, we obtain the
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natural logarithm as

logC1|2(u1, u2) = log(−ψ′(s))− log(−ψ′(s2)) = (1− 1/θ)[log(s2)− log(s)] + s
1/θ
2 − s1/θ.
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