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Overview 
This report reviews the academic literature on risk aggregation and diversification as well as the 
regulatory approaches. We will point out the advantages and disadvantages of the different 
approaches with a focus on model risk issues. 

We first discuss, in section 1, the basic fundamentals of measuring aggregated risk. Specifically, 
we review the concept of a risk measure as a suitable way to measure the aggregate risk. We 
discuss desirable properties of risk measures and illustrate our discussion with the study of 
value-at-risk (VaR) and tail value-at-risk (TVaR). 

Section 2 explores the question of diversification benefits associated with risk aggregation and 
the potential limitations of correlations as the only statistic to measure dependence. We go 
beyond correlations and explain that a full multivariate model is needed to obtain a correct 
description of the aggregate risk position. 

We then explore the regulators approach to risk aggregation and diversification in section 3, 
and provide some observations on the implicit assumption made by international regulators 
and different approaches that can be taken. 

We end our review by highlighting that model risk becomes a key issue in measuring risk 
aggregation and diversification. In section 4, we explore a framework that allows practical 
quantification of model risk and which has been recently developed in Bernard and Vanduffel 
[2015a]1 (building further on ideas of Embrechts et al. [2013]). Details are provided in 
appendices A and B. Appendix C presents the definitions of the mathematical notations used 
throughout the research paper. 

Introduction 
The risk assessment of high-dimensional portfolios ( )dXXX ,...,, 21  is a core issue in risk 
management of financial institutions. In particular, this problem appears naturally for an 
insurance company. An insurer is typically exposed to different risk factors (e.g., non-life risk, 
longevity risk, credit risk, market risk, operational risk), has different business lines or has an 
exposure to several portfolios of clients. In this regard, one typically attempts to measure the 
risk of a random sum, ,=

1= i
d

i
XS ∑  in which the individual risks 𝑋𝑖  depict losses (claims of the 

different customers, changes in the different market risk factors, etc.) using a risk measure such 
as the variance, the VaR or the TVaR2. It is clear that solving this problem is mainly a numerical 
issue once the joint distribution of ( )dXXX ,...,, 21  is completely specified. Unfortunately, 
estimating a multivariate distribution is a difficult task. In many cases, the actuary will be able 
to use mathematical and statistical techniques to describe the marginal risks iX  fruitfully but 
the dependence among the risks is not specified, or only partially specified. In other words, the 
assessment of portfolio risk is prone to model misspecification (model risk). 
                                                      
1 This paper received the 2014 PRMIA Award for New Frontiers in Risk Management. 
2 In the literature it is also called the expected shortfall, the conditional value at risk and the tail value-at-risk, 
among others. 
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From a mathematical point of view, it is then often convenient to assume that the random 
variables iX   are mutually independent, because powerful and accurate computation methods 
such as Panjer’s recursion and the technique of convolution can then be applied. In this case, 
one can also take advantage of the central limit theorem, which states that the sum of risks, S , 
is approximately normally distributed if the number of risks is sufficiently high. In fact, the mere 
existence of insurance is based on the assumption of mutual independence among the insured 
risks, and sometimes this complies, approximately, with reality. In the majority of cases, 
however, the different risks will be interrelated to a certain extent. For example, a sum S  of 
dependent risks occurs when considering the aggregate claims amount of a non-life insurance 
portfolio because the insured risks are subject to some common factors such as geography, 
climate or economic environment. The cumulative distribution function of S  can no longer be 
easily specified. 

Standard approaches to estimating a multivariate distribution among dependent risks consist in 
using a multivariate Gaussian distribution or a multivariate Student 𝑡 distribution, but there is 
ample evidence that these models are not always adequate. More precisely, while the 
multivariate Gaussian distribution can be suitable as a fit to a data set “on the whole”, it is 
usually a poor choice if one wants to use it to obtain accurate estimates of the probability of 
simultaneous extreme (tail) events, or, equivalently, if one wants to estimate the VaR of the 
aggregate portfolio i

d

i
XS ∑ 1=

=  at a given high confidence interval; see McNeil et al. [2010]. 

The use of the multivariate Gaussian model is also based on the (wrong) intuition that 
correlations3 are enough to model dependence (Embrechts et al. [1999], Embrechts et al. 
[2002]). This fallacy also underpins the variance-covariance standard approach that is used for 
capital aggregation in Basel III and Solvency II, and which also appears in many risk 
management frameworks in the industry. Furthermore, in practice, there are not enough 
observations that can be considered as tail events. In fact, there is always a level beyond which 
there is no observation. Therefore if one makes a choice for modelling tail dependence, it has 
to be somewhat arbitrary, at least not based on observed data. 

There is recent literature on the development of flexible multivariate models that allow a much 
better fit to the data using, for example, pair-copula constructions and vines (see e.g., Aas et al. 
[2009] or Czado [2010] for an overview). While these models have theoretical and intuitive 
appeal, their successful use in practice requires a data set that is sufficiently rich. However, no 
model is perfect, and while such developments are clearly needed for an accurate assessment 
of portfolio risk, they are only useful to regulators and risk managers if they are able to 
significantly reduce the model risk that is inherent in risk assessments. 

In this review, we provide a framework that allows practical quantification of model risk and 
which has been recently developed in Bernard and Vanduffel [2015a] (building further on ideas 
of Embrechts et al. [2013] and references herein). Technically, consider 𝑁 observed vectors 

Nidii xx 1,...,=1 )},...,{(  and assume that a multivariate model has been fitted to this data set. 

                                                      
3 It should be clear that using correlations is not enough to model dependence, as a single number (i.e., the 
correlation) cannot be sufficient to describe the interaction between variables unless additional assumptions are 
made (e.g., a Gaussian dependence structure). 
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However, one does not want to trust the fitted multivariate model in areas of the support that 
do not contain enough data points (e.g., tail areas). The idea is thus to split ℝ𝑑 into two 
subsets, the first subset ℱ is referred to as the “fixed part” and the second subset 𝒰 is the 
“unfixed part”, which will incorporate all the areas for the fitted model is not giving an 
appropriate fit. This incorporates the two directions discussed above for risk aggregation. If one 
has a perfect trust in the model, then all observations are in the “fixed” part (𝒰= ∅) and there is 
no model risk. If one has no trust at all in the fit of the dependence, then ℱ = ∅ and we are in 
the setting of Embrechts et al. [2013] who derive risk bounds for portfolios when the marginal 
distributions of the risky components are known but no dependence information is available. 
The approach of Bernard and Vanduffel [2015a] makes it possible to consider dependence 
information in a natural way and may lead to more narrow risk bounds. This framework is also 
supplemented with an algorithm allowing actuaries to deal with model risk in a very practical 
way, as we will show in full detail. 

1. Measuring Aggregate Risk 
Insurance companies essentially exchange premiums against (future) random claims. Consider a 
portfolio containing 𝑑 policies and let iX  )1,2,...,=( di  denote the loss, defined as the random 
claim net of the premium, of the −i th policy. In order to protect policyholders and other 
debtholders against insolvency, the regulator will require the portfolio loss 

dXXXS +++ ...= 21  to be “low enough” as compared to the available resources, say a capital 
requirement K , which means that the available capital 𝐾 has to be such that KS −  is a “safe 
bet” for the debtholders. i.e., one is “reasonably sure” that the event ‘ KS > ’ is of minor 
importance (Tsanakas and Desli [2005], Dhaene et al. [2012]). 

It is clear that measuring the riskiness of dXXXS +++ ...= 21  is of key importance for setting 
capital requirements. However, there are several other reasons for studying the properties of 
the aggregate loss S . Indeed, an important task of an Enterprise Risk Management (ERM) 
framework concerns capital (risk) allocation, i.e., the allocation of total capital held by the 
insurer across its various constituents (subgroups) such as business lines, risk types, and 
geographical areas, among others. Indeed, doing so makes it possible to redistribute the cost of 
holding capital across the various constituents so that it can be transferred back to the 
depositors or policyholders in the form of charges (premiums). Risk allocation also makes it 
possible to assess the performance of the different business lines by determining the return on 
allocated capital for each line. Finally, the exercise of risk aggregation and allocation may help 
to identify areas of risk consumption within a given organization and thus to support the 
decision-making concerning business expansions, reductions, or even eliminations; see Panjer 
[2001], Tsanakas [2009]. 

When measuring the aggregate risk S , it is also important to consider the context at hand. In 
particular, different stakeholders may have different perceptions of riskiness. For example, 
depositors and policyholders mainly care only about the probability that the company will meet 
its obligations. Regulators primarily share the interests of depositors and policyholders and 
establish rules to determine the required capital to be held by the company. However, they also 
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care about the magnitude of the loss given that it exceeds the capital held, as this is the amount 
that needs to be funded by society when a bailout is needed. Formally, they care about the 
shortfall of the portfolio loss S  with solvency capital requirement 𝜚(𝑆) that is, 

�𝑆 −  𝜚(𝑆)�
+
≔ max(0, 𝑆 −  𝜚[𝑆]) (1.1) 

The shortfall is thus part of the total loss that cannot be covered by the insurer. It is also 
referred to as the loss to society or the policyholder’s deficit. In view of their limited liability, 
shareholders do not really have to care about the residual risk but rather focus on the 
properties of the variable 𝑆 − (𝑆 −  𝜚(𝑆)�

+
.  ≔ min( 𝑆, 𝜚(𝑆)). In summary, various 

stakeholders may have different perceptions and sensitivities with respect to the meaning of 
the risk they run, and they may employ different paradigms to define and measure it. 

As for measuring the risk, the two most influential risk measures are the VaR and the TVaR4. For 
a given probability level 𝑝, they are denoted by VaRp and TVaRp, respectively, and are defined 
as 

( ) [ ]{ } 1,<<0,�|min=VaR ppsSPsSp ≥≤  (1.2) 

and 

( ) [ ] 1.<<0,VaR
1

1=TVaR
1

pdqS
p

S qpp ∫−
 (1.3) 

So, VaRp is merely the minimum loss one observes with probability 1− ,p  whereas TVaRp is the 
average of all upper VaRs. 

1.1 Coherent Risk Measures 

The VaR and TVaR are merely two particular examples of risk measures. In fact, any functional 𝜚 
mapping the random loss X  (belonging to a relevant5 set Γ  of random losses) into a number 
𝜚[𝑋] can be used. However, it makes sense to impose certain properties (axioms) to the risk 
measure 𝜚. Hereafter, we define a typical (and appealing) set of axioms. From a normative 
point of view, the “best set of axioms” is, however, nonexistent, as any normative axiomatic 
setting is based on a “belief” in its underpinning axioms. We obtain, 

• Positive homogeneity: for any Γ∈X  and 0>a , 𝜚[𝑎𝑎] = 𝑎𝑎[𝑋]; 

• Translation invariance: for any Γ∈X  and b ∈ ℝ , 𝜚[𝑋 + 𝑏] =  𝜚[𝑋] + 𝑏; 

• Monotonicity: for any ,, Γ∈YX  YX ≤  implies that 𝜚[𝑋] ≤  𝜚[𝑌]; and 

• Subadditivity: for any Γ∈YX , , 𝜚[𝑋 + 𝑌] ≤  𝜚[𝑋] +  𝜚[𝑌]. 

In Artzner et al. [1999], a risk measure that satisfies the aforementioned four properties of 
monotonicity, positive homogeneity, translation invariance, and (most noticeably) subadditivity 
                                                      
4 Between these two, the VaR is currently by far the most popular risk measure in practice, among both regulators 
and risk managers; see, for example, Jorion [2006]. 
5 In particular, the set Γ  contains the random losses iX  )1,2,...,=( di  and we assume that Γ∈ji XX ,  

implies that Γ∈+ ji XX , and also Γ∈iaX  for any 0>a  and Γ∈+ bX i  for any real b . 
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is called a coherent risk measure. As is well-known, the VaR does not satisfy the subadditivity 
property whereas for any ,p  the TVaR does. In fact, TVaR can be readily seen as the smallest 
coherent risk measure that is more conservative than VaR (which is not coherent) (for a proof, 
see Artzner et al. [1999] and also Dhaene et al. [2006]). 

While the first three properties do not present much controversy, the desirability of the 
subadditivity property of a risk measure has been a major topic for research and discussion (see 
also section 2.1). In the next subsection we explain that subadditivity is typically a natural 
constraint indeed. In this regard, we stress that the terminology “coherent” can be somewhat 
misleading as it may suggest that any risk measure that is not “coherent” is inadequate. Note 
that the well-known standard deviation principle, defined as 𝜚(𝑋) =  𝔼(𝑋) + 𝑘√𝑣𝑣𝑣(𝑋) for 
some constant k , does not satisfy the monotonicity axiom and is thus not coherent6. In what 
follows, we assume in line with the academic literature and current practice that 𝜚(𝑋) only 
depends on the distribution of X  (i.e., 𝜚(𝑋) is a functional of the distribution of X  and is 
called a law-invariant risk measure). 

1.2 Backtesting and Robustness of Risk Measures 

Backtesting: Ultimately, a model is used to assess the riskiness of S  and to obtain a risk 
number 𝜚(𝑆). In many cases, it is possible to build several competing models that are all 
consistent with respect to the available (incomplete) information and merely differ with respect 
to the ad hoc assumptions that are made. 

A natural way to compare the competing models is to use an error measure that involves the 
point forecasts and the realizing observations. More precisely, the performance of a particular 
model can be summarized by means of the average 𝑇 of the scoring function T over 𝑛 forecast 
cases, i.e., 

𝑇 = ∑ 𝑇𝑛
𝑖=1 (𝑥𝑖,𝑦𝑖), (1.4) 

where the −i th forecast case corresponds to the couple ),( ii yx  in which ix  is the point 
forecast and iy  is the observation )1,2,...,=( ni . Typical examples of scoring functions are the 

squared error 2)(=),( yxyxT −  and the absolute error .|=|),( yxyxT −  

Gneiting [2011] shows that the scoring function T used should be adapted to the risk measure 
at hand, otherwise misguided inferences can be obtained. This author argues that one should 
evaluate the quality of the model (used to predict the functional 𝜚(𝑠)) by using a scoring 
function that would issue this functional as an optimal point forecast. If a scoring function is 
given, the optimal forecast (assuming that observations are identically and independently 
distributed), by applying Bayes’ rule, follows from 

)),,((minarg= SxTEx
x

∗  (1.5) 

                                                      
6 A distortion risk measure, defined as 𝜚 ttgtFX ' d)(1)(=)( 11

0
−−∫  for an increasing function g  with 0=(0)g

, 1=(1)g  is coherent if g  is concave on [0, 1]. We refer to Wang [2000], Bäuerle and Müller [2006], and Föllmer 
and Schied [2010] and the references therein for studies of risk measures and their properties. 
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For example, if the scoring function is the squared error, the optimal forecast is known to be 
the mean of S , while if the scoring function is the absolute error, the solution is given by its 
median. If this match between risk measure (functional) and scoring function exists, then the 
risk measure is “elicitable”. For example, the mean and the median are elicitable. Also the VaR 
is elicitable, as using a (generalized) piecewise linear scoring function is consistent with VaR 
estimates. However, not every risk measure is elicitable: the standard deviation is not and, 
most notably, also the TVaR is not elicitable (see also Ziegel [2014] and Embrechts and Hofert 
[2014]). 

Risk measures that are not elicitable make it possible that there will be inconsistencies when 
comparing point forecasts from different models and/or from different forecasters. Suppose 
you have a model which is known to provide the best 99.5%-VaR estimate of the portfolio loss. 
However, there is also another model available that is known to give a suboptimal 99.5%-VaR 
estimate. Then, if you use the square error scoring function (which is not consistent with 99.5%-
VaR) to evaluate the 99.5%-VaR estimates you might end up picking the suboptimal models, 
simply because you are using the wrong metric to assess the 99.5%-VaR estimates. 

A few comments are in order: TVaR is not elicitable but it is indirectly elicitable as it can be 
decomposed into a conditional mean and a quantile, which are both separately elicitable. 
Furthermore, backtesting requires a rich data sample of predictions and observations, which is 
not readily available in the context of solvency assessments in which the horizon used is 
typically one year. Furthermore, the consistency argument used to link a risk measure to an 
optimal scoring function builds on the assumption that all observations are identically and 
independently distributed, which is not always the standard situation encountered in risk 
practice. 

Robustness: Another important topic concerns the robustness of the risk measure with respect 
to model misspecification and small changes in the data. From a regulator’s viewpoint, the risk 
measure used should really be stable with respect to varying model assumptions and small 
changes in data sets. In the context of Solvency II, two insurers holding the same portfolio 
should obtain the same VaR for this portfolio. However, when the correct model cannot be 
identified with (almost) certainty, the insurers may use two different models and obtain 
significantly different VaR results. For example, Chernih et al. [2010], show that it is possible to 
build a credit risk portfolio model that is consistent with the standard7 MKMV credit risk model 
one with the exception of MKMV using a Gaussian dependence among asset returns 
whereas Chernih et al. [2010] employ a different copula (which, however, yields the same 
correlations as in MKMV). Hence, both models are perfectly consistent with the available 
information on exposure, loss-given default, default probabilities and correlations, but when 
used to estimate the 99,5% VaR of a typical loan portfolio their results can differ with a factor 
as high as 15; see also Heyde and Kou [2004], Kou et al. [2013], Bernard et al. [2013b], 

                                                      
7 The MKMV model is used by many financial institutions for assessing the riskiness of credit risk portfolios. 
Furthermore, the Basel III standard framework relies on it to determine the required capital that banks need to 
hold for the credit risk they run; see Basel Committee [2010b]. Also the Solvency II framework uses this formula to 
decide on the amount of capital that insurers need to hold as a buffer against the adverse consequences if one or 
more of their reinsurance or derivative counterparts fail. 
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and Bernard et al. [2015] for more evidence and other examples. In the light of these 
observations Bernard et al. [2013b] warn for the use of VaR at high confidence levels (e.g., 
99.5%) as a basis for capital requirements. Note also that if the external risk measure is not 
robust, institutions may pursue regulatory arbitrage by choosing a model that significantly 
reduces the capital requirements or by manipulating the input data. 

2. Aggregation and Diversification 

2.1 Diversification Benefits and Subadditivity 

From the Canadian regulator’s website (OSFI [2014]), one can read “we define risk aggregation 
as the approach used to calculate the total of each and all of the risk elements. A diversification 
credit results when the method of aggregation of risks produces results that are less than the 
sum of the total of the individual risk elements.” Diversification benefits may come from 
pooling risks within one type of risk such as insurance risk, from pooling several types of risks 
(e.g., insurance risk and asset risk), across entities or across geographies. There is a careful 
warning that it is hard to determine the diversification benefits in periods of stress. Capital 
requirements are determined to cover stress periods and it is especially in these stressed 
periods that some potential diversification benefits disappear. Reduction of capital should be 
granted for diversification benefits only in the case when even during stress periods, the 
diversification benefit stays valid. Some benefits should, however, be recognized. See OSFI 
[2014] for discussion of diversification benefits between volatility risk and respectively mortality 
risk, morbidity risk, longevity risk, and lapse risk. 

Let us consider portfolios with respective losses 1S  and 2S  and let 𝜚 be a risk measure used for 
setting capital requirements; i.e., 𝜚 (𝑆1) is the capital for the first portfolio, 𝜚(𝑆2) is the capital 
for the second portfolio, and 𝜚(S1 + S2) is the capital of the combined (merged) position. Note 
that we assume that the losses 1S  and 2S  do not change nature when merging the portfolios. 
In reality, however, merging or splitting portfolios may change management, business strategy, 
and cost structure, among others, and may thus change the marginal distribution of the losses 
under consideration. 

A standard definition for the diversification benefit, denoted by 𝐷𝐷(𝜚, 𝑆1, 𝑆2) is that 

𝐷𝐷(𝜚, 𝑆1, 𝑆2) =  𝜚(𝑆1) +  𝜚(𝑆2) −  𝜚(𝑆1 + 𝑆2). (2.6) 

Hence,  𝐷𝐷(𝜚, 𝑆1, 𝑆2) provides the gain (loss) one obtains by merging two portfolios. It is clear 
that if 𝜚 is coherent (and thus subadditive) then the diversification benefit is non-negative, 
which corresponds to the common intuition that merging risks creates benefits. To confirm this 
intuition, let us observe that 

(𝑆1 + 𝑆2 - 𝜚(𝑆1) - 𝜚(𝑆2))+ ≤ ∑ (𝑆𝑗2
𝑗=1 −  𝜚(𝑆𝑗))+. (2.7) 

Inequality (2.7) states that the shortfall risk of the merged portfolio is always smaller than the 
sum of the shortfall risks of the stand-alone portfolios, when the solvency capital requirement 
is additive. It expresses that, from the viewpoint of the regulator, a merger is beneficial in the 
sense that shortfall risk decreases when the capitals are summed up. The underlying reason is 
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clear: within the merged portfolio, the shortfall of one of the entities can be compensated by 
the gain of the other. In summary, “a merger decreases the shortfall”. Hence, the inequality 
(2.7) indicates that the solvency capital of the merged position can be smaller than the sum of 
the solvency capitals of the two stand-alone portfolios. These observations provide support for 
the common belief that a solvency capital requirement (risk measure) should be subadditive. 
Indeed, when merging two stand-alone portfolios, subadditivity is allowed by the regulator as 
long as 

(𝑆1 + 𝑆2 - 𝜚(𝑆1 + 𝑆2))+ ≤ ∑ (𝑆𝑗2
𝑗=1 −  𝜚(𝑆𝑗))+ 

holds. In this regard, let us notice that the requirement of subadditivity implies that 

(𝑆1 + 𝑆2 - 𝜚(𝑆1 + 𝑆2))+ ≥ (𝑆1 + 𝑆2 - 𝜚(𝑆1) - 𝜚(𝑆2))+, (2.8) 

and consequently, for some realizations ),( 21 ss  we may have that 

(𝑠1 + 𝑠2 - 𝜚(𝑆1 + 𝑆2))+ ˃ (𝑠1 - 𝜚(𝑆1))P

+ + (𝑠2 - 𝜚[𝑆2])+. 

Hence, the use of a subadditive risk measure may give rise to a larger shortfall than the sum of 
the shortfalls of the stand-alone entities, i.e., 

(𝑠1 + 𝑠2 - 𝜚(𝑆1 + 𝑆2))+ ˃ (𝑠1 - 𝜚(𝑆1))P

+ + (𝑠2 - 𝜚(𝑆2))+ 

may hold (Dhaene et al. [2008]). Therefore, while subadditivity is an acceptable property from 
the viewpoint of regulators they should restrict the degree of subadditivity in order to avoid 
that (𝑆1 + 𝑆2 - 𝜚(𝑆1 + 𝑆2))+ becomes too risky as compared to (𝑆1 - 𝜚(𝑆1))+ + (𝑆2 - 𝜚(𝑆2))+. 

In this regard, it is also important to note that it is not clear-cut that merging is advantageous 
for the shareholders. We explain this as follows. For portfolio j (j = 1, 2) the end-of-the-year 
available funds are given by (𝜚�𝑆𝑗� −  𝑆𝑗)P

+. Indeed, if the loss 𝑆𝑗 is smaller than the capital 
𝜚(𝑆𝑗), then the funds that belong to the shareholders (at the end of the reference period) will 
be given by 𝜚�𝑆𝑗� −  𝑆𝑗, whereas in the case that the loss 𝑆𝑗 exceeds 𝜚(𝑆𝑗), the business unit 
related to this portfolio gets ruined and the available funds become equal to zero. Since 

(𝜚(𝑆1) + 𝜚(𝑆2) - 𝑆1 - 𝑆2)+ ≤ ∑ (𝜚(𝑆𝑗2
𝑗=1 ) - 𝑆𝑗)+, (2.9) 

we observe that keeping the two portfolios separated might be preferred from the 
shareholders’ point of view, essentially because in this case firewalls are built in, ensuring that 
the poor performance of one portfolio will not contaminate the other one. In fact, the 
shareholders and regulators have interests that are not fully aligned; see also Dhaene et al. 
[2008] and Dhaene et al. [2009] for more discussion. 

2.2 The Fallacy of Using Correlations Only 

Some practitioners appear to believe that for aggregating two risks one needs to know only 
their correlation coefficient. This (wrong) intuition is likely due to the widespread use and 
importance8 of the multivariate normal distribution that is fully characterized upon 
                                                      
8 The multivariate distribution is at the center of many theories and applications such as linear regression, principal 
component analysis, CAPM, Markowitz mean-variance analysis, discriminant analysis, capital aggregation (e.g., 
Basel III and Solvency II), credit portfolio modeling (Moody’s KMV model). 
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specification of the means, standard deviations, and pairwise correlations (Embrechts et al. 
[1999, 2002]). However, one should be aware of the fact that the multivariate normal 
distribution inherits a choice of a specific (Gaussian) dependence already and that correlations 
are merely needed to parameterize this Gaussian dependence. Effectively, it is easy to 
construct two normal random variables that have a specific correlation coefficient but that are 
not jointly (bivariate) normal. To illustrate this feature, let X  and Y  be standard normally 
distributed random variables that are independent. In particular, they have a Gaussian 
dependence with zero correlation. Next, we consider cZ  defined as XZ −=  if cX |<|  and 

XZ =  if cX |>|  0).>(c  It is easy to see that Z  is also standard normally distributed: it has 
perfect positive correlation with X  in the tails and perfect negative correlation otherwise. One 
can then choose ∗c  such that correlation between X  and ∗c

Z  is zero ( 1.538≈∗c ). Hence, 

when )(> ∗Φ cp  ( )(⋅Φ  denotes the c.d.f. of the standard normal random variable),  

VaR )(2=)( 1 pZX
cp

−
∗ Φ+  whereas VaR )(2=)( 1 pYXp

−Φ+ . A numerical illustration can be 

found in figure 2.1. 

  
Panel A Panel B Panel C 

Figure 2.1: Illustration of three situations where the random variables are standard normally 
distributed and have zero correlation. 

Another example illustrating the deficiencies of correlations concerns risk measurement of a 
portfolio of credit loans. To explain this idea, let us consider risks iX  )1,2,...,=( ni  indicating 
default events so that ni XXXS +++ ...= 2  reflects the number of defaults of the portfolio. 
Specifically, let ip  denote the probability that the i -th company defaults and denote by ijp  the 
pairwise default probability that both company i  and company j  default. The pairwise default 
correlation D

ijρ  ),1,2,=,( nji 2  is then given as 

.
)(1)(1

=
jjii

jiijD
ij pppp

ppp
−−

−
ρ  (2.10) 

In other words, correlations only reveal full information on interaction between two default 
events (pairwise), but not really on the manner three or more loans interact. In this regard, 
note that there is an intrinsic lack of sufficient default statistics (joint defaults are inherently 
very rare events) and one can simply not expect to be able to reliably estimate higher order 
joint default probabilities. In other words, assessing the risk of a credit risk portfolio is 
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inherently subject to model uncertainty9. For example, the influential MKMV model links 
defaults of companies to the asset return behavior and assumes that asset returns are 
multivariate normally distributed. This assumption, however, is merely one possible choice and 
there are no reasons to believe this assumption is close to reality. Bernard, Rüschendorf and 
Vanduffel [2013b] assess the impact of model uncertainty on VaR calculations. When using 

99.5%=p  as the basis for calculating VaR and capital requirements (as in Basel III and Solvency 
II), the results of industry models are typically within a wide range of possible values of VaR. By 
contrast, model risk appears more limited when using more moderate levels of probability to 
assessing the VaR. These authors conclude that it might be useful to impose additional 
constraints on models when used for setting capital requirements. For example, one may use 
the obtained VaR bounds to set a minimum value on the VaR that is obtained by the internal 
model, or, one may want to impose a particular model that different institutions need to use 
for computing capital requirements, as this provides some guarantee that capital levels can be 
readily compared across institutions also yielding fair competition. 

2.3 The Impact of Microcorrelations 

In this section, we present another weakness of correlation. Kousky and Cooke [2012] explain 
how catastrophic risks are usually characterized by fat tails and dependence. With fat-tailed 
loss distributions, the probability of an event declines only slowly, relative to its severity, 
meaning that very large losses are not so exceptional (for more mathematical explanations we 
refer to Kousky and Cooke [2012]). Many natural catastrophes have been shown to be fat 
tailed. As explained in full detail in Kousky and Cooke [2012], catastrophes can introduce 
another type of dependence, which is called tail dependence. Tail dependence refers to the 
probability that one variable exceeds a certain percentile, given that another has also exceeded 
that percentile. More simply, it means bad things are more likely to happen together. It is clear 
that a catastrophe will potentially hit simultaneously multiple lines of business for an insurer 
(houses, cars, health, businesses, etc.). Lescourret and Robert [2006] have observed such tail 
dependence for lines of insurance covering over 700 storm events in France. Moreover, 
catastrophic risks tend to be spatially correlated because of the high dependence among the 
claims due to a given disaster. In practice, this correlation declines with the spatial distance 
between policies. When it declines to zero, it allows insurers to diversify by holding policies in 
different regions. Unfortunately, Kousky and Cooke [2012] find that “close to zero” does not 
count as zero for diversification benefits. Even small, positive, average correlations among 
policies, which they term “microcorrelations”, can cause problems in risk aggregation. 

The main issue with microcorrelation comes from the fact that the law of large numbers fails 
when risks are not independent even if they display a correlation coefficient that is very close to 
zero. This is well explained in the works of Kousky and Cooke [2009], Cooke and Kousky [2010], 
and Cooke et al. [2011] applied on catastrophic risks in Kousky and Cooke [2012]. The basic idea 
is very simple and is based on the situations in which policies have a small, average, positive 
correlation (say 0.04, which is the average correlation found in flood insurance claims in the 

                                                      
9 Duffie and Singleton [2012]. 
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U.S. at a county level in Cooke and Kousky [2010]). Cooke and Kousky show how quickly tiny, 
positive correlations between policies can become pernicious. 

Let nXX ,...,1  and nYY ,...,1  be two sets of random variables with the same average variance 𝜎2 
and average covariance C  (within and between sets). The correlation of the sums of the X ’s 
and the sum of the Y ’s is easily found to be 

Cnnn
CnYXcorr i

n

i
i

n

i 1)(
=, 2

2

1=1= −+







 ∑∑ σ
 (2.11) 

The main issue is that it goes to 1 as n  grows, if C  is non-zero (even very small), and 2σ  is 
finite. If all variables are independent, then 0=C , and the correlation in (2.11) is zero. To 
highlight this amplification of correlation, Kousky and Cooke [2009] use flood insurance claim 
data. They randomly draw pairs of U.S. counties and compute their correlation. The green 
histogram in figure 2.2 shows 500 such correlations. The average correlation is 0.04. Although a 
few counties have high and positive correlations, most of the correlations are very small and 
around zero. Instead of looking at the correlations between two randomly chosen counties, 
they then sum 100 randomly chosen counties and correlate this with the sum of another 
distinct set of 100 randomly chosen counties. After repeating this 500 times, they obtain the 
blue histogram where the average of 500 such correlations (of 100) is 0.23. The red histogram 
depicts 500 correlations (of 500) with an average value is 0.71. This dramatic increase in 
correlation is a result of the microcorrelations between the individual variables. 

 
Figure 2.2: Figure 11 from Kousky and Cooke [2009] is reproduced here as an illustration. 

2.4 Fitting a Multivariate Distribution 

In practice, there exist efficient and accurate statistical techniques to estimate the respective 
marginal distributions of ),,1 dXX (=X . On the other hand, the joint dependence structure 
of X  is often much more difficult to capture: there are computational and convergence issues 
with statistical inference of multi-dimensional data, and the choice of multivariate distributions 
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is quite limited compared to the modelling of marginal distributions. However, an inappropriate 
dependence assumption can have important risk management consequences. For example, 
(mis)using the Gaussian multivariate copula can result in severely underestimating probability 
of simultaneous default in a large basket of firms (McNeil et al. [2010]). 

The easiest (and therefore popular) modelling of a multivariate distribution is to use a 
multivariate Gaussian or multivariate Student distribution. The advantage of the multivariate 
Student distribution is that it displays some tail dependence. However, there are limitations of 
this multivariate dependence as there is a single degree of freedom parameter which drives the 
tail dependence of all pairs of variables. 

More generally, multivariate distribution can be decomposed in the marginal distributions 
iXF , 

di 1,2,...,=  (reflecting the stand-alone risks) and a so-called copula function C  (reflecting the 
dependence). More precisely, Sklar [1959]’s theorem states that there exists a vector 
( )dUUU ,...,, 21  of standard uniformly distributed random variables such that 

)).(),...,(),((= 1
2

1

21
1

1 dnXXX

d
UFUFUF −−−X  (2.12) 

where “
d
= ” reflects equality in distribution. The representation (2.12) thus shows that the 

distributional properties of the portfolio X  are indeed completely specified by the marginal 
distributions 

iXF  )1,2,...,=( di  of its risky components and the joint distribution C  of 

( )dUUU ,...,, 21  describing the interaction among the risks of the portfolio. 

Copulas have been extensively studied by Joe [1997] and Nelsen [2007]. There are large families 
of two-dimensional copulas so that modelling dependence between two variables is relatively 
easy. The most popular two-dimensional copulas are the Archimedian ones for which an 
important literature exists on estimation and goodness of fit; see Joe [1997]. Bedford and 
Cooke [2001, 2002] have then proposed to construct a multivariate copula using pair copulas as 
building blocks. They also give graphical representations involving a sequence of nested trees, 
which they call regular vines. This multivariate model, also called pair-copula construction, 
allows to decompose a complex multivariate model into simpler two-dimensional building 
blocks. An overview is given by Czado [2010]. This approach is very flexible and allows the 
dependence between any subset of two variables to be different. For some estimation 
techniques of parameters of regular vines, one can refer to Kurowicka and Cooke [2006]. An 
alternative to pair-copula constructions is proposed in Hofert [2012] using hierarchical model; 
see Okhrin et al. [2013] for estimation issues. The nested Archimedian copulas are studied 
by Hofert and Pham [2013] and used by Savu and Trede [2010]. A comprehensive overview of 
dependence in high dimensions can be found in Embrechts and Hofert [2013]. 

2.5 Summary 

Taking into account the dependence among risky components is crucial to assess the aggregate 
risk of a portfolio. We show that subadditivity of a risk measure is justified from a regulator’s 
viewpoint. In other words, it is justified that companies receive some diversification benefits 
when aggregating risks. However, some care is needed: Diversification benefits are often 
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assessed using correlations, but correlation is a poor measure of dependence. It is merely a 
single number and not sufficient to describe the complex interaction among risky components. 
We end section 2 by discussing how to fully describe dependence. 

3. Overview of Current Regulation 
The report of the Basel Committee [2010a] describes the modelling methods used by financial 
firms and regulators in various countries to aggregate risk. It also aims at identifying the 
conditions under which these aggregation techniques perform as anticipated in the model and 
suggests potential improvements. The report expresses doubts about the reliability of internal 
risk aggregation results that incorporate diversification benefits: “Model results should be 
reviewed carefully and treated with caution, to determine whether claimed diversification 
benefits are reliable and robust.” In this section, we very briefly summarize their findings as 
well as those of other regulators. 

3.1 Regulatory Frameworks 

Basel III Regulation for Banks. One calculates a bank’s overall minimum capital requirement as 
the sum of capital requirements for the credit risk, operational risk, and market risk, without 
recognizing any diversification benefits between the three risk types. The idea that no 
diversification corresponds to the worst-case situation of the portfolio is not entirely correct. 
Technically, such property is verified when a coherent risk measure is used but may be violated 
for other risk measures such as VaR. In other words, it may be possible to aggregate risks so 
that the VaR of the aggregated risk is higher than the sum of the VaRs. 

Within the market risk, banks have the choice between two methods. They may benefit from 
diversification if they use an internal model approach (IMA). With the standardized 
measurement method (SMM), the minimum capital requirement for market risk is the sum of 
the capital charges calculated for each individual risk type (interest rate risk, equity risk, foreign 
exchange risk, commodities risk, and price risk in options). 

Canadian Minimum Capital Test (MCT) and Minimum Continuing Capital and Surplus 
Requirements (MCCSR). Capital requirements of property and casualty insurers in Canada are 
based on the MCT. The MCT is a factor-based requirement that aggregates risks as a sum with 
an explicit credit for diversification between insurance risk and the sum of credit and market 
risk, so that the total capital required for these risks is lower than the sum of the individual 
requirements for these risks. 

On the other hand, capital requirements of life insurance companies in Canada are computed 
according to the Office of the Superintendent of Financial Institutions’ (OSFI) MCCSR. The 
MCCSR employs more sophisticated approaches in some areas. “MCCSR imposes capital 
requirements for the following risk components: asset default risk, mortality risk, morbidity 
risk, lapse risk, disintermediation risk, and segregated fund guarantee risk” (Basel Committee 
[2010a]). Some diversification benefits can be incorporated in the computation of mortality 
risk, morbidity risk and segregated funds risk but the total MCCSR is calculated as the sum of 
each risk without potential reduction due to diversification. Again it is (implicitly) assumed here 
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that this is the worst possible situation. More information on the MCT and MCCSR can be found 
on the website of OSFI (www.osfi-bsif.gc.ca). 

Solvency II. The Solvency Capital Requirement (SCR) under Solvency II is defined as the VaR at 
99.5% and a horizon of one year. When aggregating risks, insurers may benefit from 
diversification: they have the option to use an internal model (without any particular method 
prescribed) or a standard formula. The standard formula aggregates risks using a correlation 
matrix (Var-Covar approach) to take into account dependencies. 

Swiss Framework for Insurance Companies. Since 2008, all insurers in Switzerland must use the 
Swiss Solvency Test (SST). Similarly as in Solvency II, there is a standard model and the 
possibility to use an internal model. The standard model considers the following risks 
separately: market risk, credit risk (counterparty default), non-life insurance risk, life insurance 
risk, and health insurance risk. Operational risks do not make part of the current SST. 
Diversification between risk categories is recognized in all cases. Life insurance companies use 
the Var-Covar aggregation method, whereas non-life insurers aggregate risks more carefully to 
find the distribution of the aggregate risk and then use an expected shortfall (or TVaR). 

U.S. Insurance Risk-Based Capital (RBC) Solvency Framework. We end our brief review of 
regulatory frameworks used across the world in the industry by the U.S. RBC. The RBC formula 
is a standardized system applied to all states in the U.S. and allowing for an easy comparison 
across companies. Each type of insurer has a separate RBC formula (life, property and casualty, 
and health). Diversification benefits are incorporated by computing a covariance matrix among 
the individual risks to reduce the overall capital so that it is smaller than the sums of individual 
risks. 

In the calculation of RBC, the formula is a square root of sum of squares. This amounts to use of 
a very simple assumption for aggregating risks by assuming that they are fully correlated 
(correlation equal to one) or independent (zero correlation) (OSFI [2014]). 

3.2 Comparison and Comments on International Regulatory Frameworks 

Generally, regulatory rules incorporate diversification by taking into account some correlation 
effect to reduce the total capital (at least in some subcategories). Overall, we observe that 
regulators all implicitly assume that the sum of the risk numbers is the worst possible situation. 
“No diversification benefits” is then synonymous to “adding up risk numbers (VaRs)”. 

The easiest method to aggregate risks is the Var-Covar approach (which is explicitly mentioned 
in the Solvency II and SST above and also used by the Australian regulator (OSFI [2014])). It 
builds on the assumption that the correlation matrix is enough to describe the dependence and 
that it is possible to aggregate risks based on this correlation matrix. Its strength is in being a 
simple approach but it is merely only a correct approach for elliptical multivariate distributions 
such as the Gaussian multivariate distribution. Furthermore, correlation is a linear measure of 
dependence and does not capture tail dependence adequately. Using such a method to 
aggregate risk may perhaps be fine to have some idea on the distribution “globally”, but fails 
when it comes to assessing the risk in the tail, and note that capital requirements are typically 
based on tail risk measures such as VAR at 99.5%, which essentially reflects the outcome of a 1-
in-200 year scenario. 
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Instead of using the Var-Covar approach, one may use copulas to aggregate the individual risks. 
This approach is rather flexible and allows one to separate the risk assessment of the marginal 
distribution of individual risks and their dependence. By specifying a given copula to model 
some dependence, it is then possible to recognize tail dependence among some risks. However, 
determining the “right” copula to use is a very hard task that is prone to significant model risk, 
as we will see later in this report. Statistical methods to fit a multivariate model involve large 
numbers of parameters and copula families. In addition, understanding the outputs of the 
model will then require good expertise with the copula approach in order to understand the 
impact of each assumption made on the dependence. This is a concern and a challenge among 
institutions. 

Another way to capture tail risks and tail dependence is to understand “where the dependence 
comes from”, and to model the real risk drivers of the dependence among individual risks of the 
portfolio and understand their interactions. The report of Basel Committee [2010a] suggests 
using “scenario-based aggregation”. Aggregation through scenarios boils down to determining 
the state of the firm under specific events and summing profits and losses for the various 
positions under the specific event. In other words, it means that one needs to incorporate 
information that one knows about the dependence in some specific states. 

We propose in appendix B a method to assess model risk that is somewhat in this spirit, as it 
allows one to incorporate existing information about the dependence structure among the risks 
in some states of the world. The scenario-based approach has a clear advantage in that the 
multivariate model is then based on some clearly identified risk drivers (which can then be 
simulated, for instance) and it forces the firm to understand the chosen multivariate model: it is 
no longer a complex set of copulas, but dependence among factors is obtained through 
reasonable factors. As observed in the report of the Basel Committee [2010a], the results of 
scenario-based aggregation are easier to interpret with more meaningful economic and 
financial implications but they require again a deep expertise to identify risk drivers, derive 
meaningful sets of scenarios with relevant statistical properties, and then use them to obtain a 
full loss distribution. This will still be a challenging task. A lot of the inputs in these kinds of 
models come from experts’ judgments. Overall, there is no clear unique solution to solve the 
problem of risk aggregation. Each method has its pros and cons and may be helpful in given 
situations and useless in others. 

4. Model Risk on Dependence 
As discussed extensively in the previous sections, one of the main issues in aggregating risks 
arises from the difficulty in modelling the dependence among a large number of risks, i.e., risk 
aggregation is prone to model risk. Specifically, we showed in section 1 that there is no unique 
way to measure risk, and in section 2 that correlation is not enough to measure dependence, 
and that the full information on dependence contains much more information. However, as it 
appears in section 3, regulators around the world discuss diversification benefits and propose 
guidelines in estimating them. But there is no consensus. It turns out that dependence 
modelling carries a lot of model risk. 
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In appendices, we provide specific examples that can be helpful in better understanding model 
risk related to aggregation. Appendix A discusses how to minimize or maximize a given risk 
measure 𝜚(. ) of the aggregate risk when the distributions of the risky components are known 
but not their interdependence (consistent with the approach of Embrechts et al. [2013]). This 
approach is useful to assess model risk on dependence, which is one of the most important 
factors in assessing aggregated risk. 

However, the bounds on model risk on dependence obtained by the approach described in 
appendix A (see also Embrechts et al. [2013]) are typically too wide to be useful in practice. 
They ignore all information on dependence and consider only the information about the 
marginal distributions. There are a few papers studying model risk with partial information on 
the dependence structure. See among others, Cheung and Vanduffel [2013] for convex ordering 
bounds with given variance; Embrechts and Puccetti [2006] for bounds on the distribution of S  
when the copula of X  is bounded by a given copula; Tankov [2011] for bounds on S  when 
𝑛 = 2 and when there are constraints on the copula; Bernard et al. [2013b] when an upper 
bound on the variance of the aggregate risk is imposed, and Bernard et al. [2014a] when high-
order moments are given. 

In appendix B, we present a framework which allows practical quantification of model risk (and 
was developed in Bernard and Vanduffel [2015a]). Importantly, unlike in appendix A, we no 
longer ignore the available information on dependence. We assume that risk modellers have 
developed an “as-good-as-possible” multivariate model for a certain portfolio. However, no 
model is perfect and the extent of misspecification of the proposed model affects the risk 
measurement and should be assessed. Our framework includes an algorithm allowing actuaries 
to deal with model risk in a very practical way. 

These results make it possible to identify risk measures for which additional information of a 
well-fitted multivariate model reduces the model risk significantly, making them meaningful 
candidates for use by risk managers and regulators. Our approach may lead to bounds that are 
significantly tighter than the (unconstrained) ones available in the literature, accounting for the 
available information coming from a multivariate fitted model and allowing for a more realistic 
assessment of model risk. However, model risk remains a significant concern and we 
recommend caution regarding regulation based on VaR at a very high confidence level since 
such an assessment is unable to benefit from careful risk management attempts to fit a 
multivariate model. For instance, we observe from numerical experiments that the portfolio 
VaR at a very high confidence level (as used in the current Basel regulation) might be prone to 
such a high level of model risk that, even if one knows the multivariate distribution nearly 
perfectly, its range of possible values remains wide. In fact, one may then not even be able to 
reduce the model risk as computed in Embrechts et al. [2013] (see also appendix A) where no 
information on the dependence among the risks is used at all. 

We remark that it could be of interest to consider also a “global” constraint to sharpen the 
bounds further. A natural global statistic on the distribution of the aggregate risk is the variance 
and it would be relatively easy to extend our study by using techniques similar to those 
employed in Bernard et al. [2013b] to account for a maximum possible variance of the 
aggregate portfolio. 
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Finally, we assume that the marginal distributions are fixed and known. To capture the possible 
uncertainty of the marginal distributions, one might consider amplifying their tails. For 
example, a distortion (Wang transform) could be applied when re-discretizing (instead of using 
𝑓𝚤�). 

Superadditivity of VaR: We end this section with an important discussion on consequences of 
aggregation. Specifically, we discuss the superadditivity of VaR. Comonotonicity is the worst-
case dependence according to risk-averse decision makers, but that it does not yield the 
maximum VaR of a portfolio (more details can be found in appendix A). The worst case VaR 
does not readily occur when the risks are perfectly correlated. As VaR is additive for 
comonotonic risks, there thus exists a dependence such that 

𝑉𝑉𝑅𝑝(𝑋1 + 𝑋2 + ⋯+  𝑋𝑛) ≥ 𝑉𝑉𝑅𝑝(𝑋1) + 𝑉𝑉𝑅𝑝(𝑋2) + ⋯+ 𝑉𝑉𝑅𝑝(𝑋𝑛) (4.13) 

The non-existence of diversification benefits is a situation that is hard to accept by 
practitioners. In addition, the use of VaR can lead to inconsistent risk rankings since the highest 
possible value of the risk measure does not correspond to the scenario of full dependence. An 
important question is when the stated inequality (4.13) is strict, i.e., when does one have 
(strict) superadditivity and how significant is the superadditivity. It is not difficult to show that 
one can always find a dependence such that the stated inequality is strict unless 𝑉𝑉𝑅𝑞(𝑋𝑖) is 
constant for 𝑞 ≥ 𝑝 (see also Bernard, Rüschendorf and Vanduffel [2013b]). This observation 
allows us to draw the following conclusions: 

• When only the marginal distributions are known and the portfolio contains un-bounded 
risks, then the maximum possible VaR (by finding the worst possible dependence) can 
be significantly larger than the VaR obtained in the comonotonic case (in which the VaR 
is additive). For example, Embrechts et al. [2013] show in their figure 5 that for a 
portfolio of Pareto(2) distributed risks the upper bound on the VaR is about two times 
larger than the comonotonic VaR (i.e., when the marginal risks are assumed to be 
comonotonic). See also Embrechts et al. [2014]. More generally, Puccetti and 
Rüschendorf [2012b] show that under some mild conditions the worst VaR behaves 
asymptotically as the worst TVaR. The intuition behind this result is as follows. The VaR 
(measured at some probability level 𝑝) of a comonotonic sum is of course just a 
particular point on the quantile function of this sum. Now, by changing the comonotonic 
dependence in the upper tail of the marginal supports (from level 𝑝 onwards), one is 
able to adjust the upper quantiles of the sum (from level 𝑝 onwards). As the quantile 
function is non-decreasing, it is then clear that the highest VaR will be obtained if one 
can change the dependence such that the quantile function of the sum becomes  a 
constant on (𝑝, 1). The constant value is then the maximum VaR and is equal to the 
comonotonic TVaR (Bernard et al. [2013b]). 

Although, the fact that for a given 𝑝, some dependence structures yield a VaR larger 
than the comonotonic VaR, this may not happen in real-world situations. 

• Insurance companies typically have limited liability, hence the VaR cannot be (strictly) 
superadditive for high levels of probability (which is the standard case for solvency 
assessments). In fact, in this case, the VaR obtained by using a particular model is likely 
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to be subadditive. This feature is important, as violation of the subadditivity property is 
grounds for refuting a risk measure, in particular VaR. 

• The situation described above stresses that information on the dependence is crucial if 
one wants to build models that provide risk numbers that are trustworthy in the sense 
that upper and lower bounds for these numbers stay in some reasonable range. For 
example, it might be reasonable to assume that the risks are positively dependent, or 
the variance of the aggregate risk can be estimated accurately from a statistical analysis 
of observed losses, or some information on the copula function might be available. In 
this regard, the results in the literature on ranges of VaR in the presence of additional 
dependence information are more limited and of an ad hoc nature. Rüschendorf 
[1991], Embrechts and Puccetti [2010a], and Embrechts et al. [2013] consider the 
situation in which some of the bivariate distributions are known, and Denuit et al. 
[1999] study VaR bounds assuming that the joint distribution of the risks is bounded by 
some distribution. However, the bounds that are proposed in these papers are often 
hard to deal with, especially for high-dimensional and inhomogeneous portfolios, and 
they do not necessarily sharpen the unconstrained bounds in a significant way; see 
also Chernih et al. [2010] for an illustration in the context of credit risk portfolio 
modelling. These observations, however, contrast with the findings of Bernard et al. 
[2013b]. They consider the presence of a variance constraint on the portfolio sum as a 
source of dependence information and show that doing so can significantly tighten the 
(unconstrained) VaR bounds. 

We recall that the risk measure that is dominantly used in regulatory frameworks is VaR. For 
example, the current European regulation of financial institutions (Basel III) formally relies on 
the concept of risk-weighted assets (RWA), but is essentially a VaR-based framework. Hence, an 
approach based on risk-weighted assets may not be appropriate if one needs to aggregate risks 
to computing VaR of a portfolio. The majority of the academic literature has always argued 
against the use of VaR because it does not comply with subadditivity. Recently there has been a 
trend in moving away from VaR and to use TVaR instead; see Embrechts et al. [2014], Basel 
Committee [2012] and Basel Committee [2013]. 

5. Conclusions 
Recent turbulent events such as the subprime crisis, have increased the pressure on regulators 
and financial institutions to carefully reconsider risk models and to understand the extent to 
which the outcomes of risk assessments based on these models are robust with respect to 
changes in the underlying assumptions. 

Consequently, we have observed a recent and important literature on risk aggregation and 
diversification benefits. New approaches for dealing with risk aggregation are to be expected, 
and the issue of model risk that is inherent in risk aggregation will be the topic of significant 
study as well. 

Section 4 briefly summarized the latest developments on the assessment of model risk. In 
appendix B, we describe a practical method to assess model risk that takes into account a 
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typical set of available information. This information may come from statistical modelling such 
as a multivariate model fitted on the data at hand (and trusted wherever there is enough data) 
but may also arise from scenarios or experts’ opinions. Assume that some information is known 
about extreme scenarios. For instance, assume that when one large reinsurer goes bankrupt, 
then one knows that the insurers that are reinsured by this reinsurer will be subject to losses 
and thus will all incur losses simultaneously (thus showing a comonotonic situation in the tail). 
If such information is available, it can be incorporated and it may be possible to reduce the 
bounds on VaR at high levels. 
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Appendix A – Model Risk of Dependence when Aggregating Risks 

At the 2014 Enterprise Risk Management (ERM) Symposium, the researchers received an award 
from PRMIA for their paper A New Approach to Assessing Model Risk in High Dimensions dated 
February 9, 2014. In addition, the researchers published related papers in the Journal of 
Banking and Finance and in Dependence Modeling. Appendices A and B discuss the approaches 
for assessing model risk that are included in these papers. 

The difficulty in modeling the dependence among a large number of risks is a main issue in 
aggregating risks, i.e., risk aggregation is prone to model risk. In this appendix, we discuss how 
to minimize or maximize a given risk measure 𝜚(. ) of the aggregate risk when the distributions 
of the risky components are known but not their interdependence (consistent with the 
approach of Embrechts et al. [2013]). In the next section, we will perform the same exercise but 
by assuming that additional dependence information is available (following the recent method 
proposed by Bernard and Vanduffel [2015a]). 

In what follows, ( )dXXX ,...,,= 21X  is the portfolio at hand with given marginal distributions 

1XF  )1,2,...,=( di  and we are interested in the properties of 𝜚(𝑆) where .=
1= i

d

i
XS ∑  For 

convenience, we assume that all means are finite. 

Recall from (2.12) that the distributional properties of the portfolio X  are completely specified 
if one also knows the copula that describes the interaction among the risks of the portfolio. In 
this case, the multivariate distribution of X  is known and there is clearly only one possible 
value for 𝜚(𝑆). However, when the dependence structure is unspecified, 𝜚(𝑆) can take a range 
of possible values depending on the dependence structure chosen. We aim at finding maximum 
and minimum possible values for 𝜚(𝑆) reflecting the degree of model risk. It is intuitive that for 
a strong dependence, 𝑆 becomes a “more variable” risk and 𝜚(𝑆) should be at the highest. 
Reciprocally, if there is a lot of compensation between the risks then 𝜚(𝑆) should be small. A 
well-known device to describe the variability among risks is the so-called convex order. 
Mathematically, the convex10 ordering, ≤ cx� between random variables X , Y  is defined as 
follows 

))((�))(( if�cx YfEXfEYX ≤≤  

for all convex functions 𝑓(. ) such that the expectation exists. Note that 

XXE cx�)( ≤  (A.14) 

and also that YX cx≤  implies that X  and Y  have the same mean but Y  has the largest 
variance. Convex order conforms well with the preferences of risk-averse investors and is very 
useful to quantify the uncertainty on 𝜚(𝑆). Specifically, when the risk measure 𝜚() is consistent 

                                                      
10 For more details on this ordering in the context of actuarial science, see e.g., Müller and Stoyan [2002], Denuit 
et al. [2005], Denuit et al. [1999], and Dhaene et al. [2002]. 

http://www.actuar.aegean.gr/samos2014/files/proceedings/Bernard14p.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2393054
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2393054
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with convex order, then convex order bounds translate into bounds of the risk measure11. This 
is the case for the variance or the TVaR for instance12. As for the VaR, this risk measure is not 
consistent with convex ordering as such, but there is still a close relationship between bounds 
on VaR and convex order bounds as we will also explain hereafter (see also Bernard et al. 
[2013b]). In any case, it is important to determine upper and lower convex bounds for sums of 
risks. 

A.1 Convex Upper and Lower Bounds 

The convex upper bound for a general number 𝑑 of individual risks is attained when the risks 
are maximally dependent (i.e., co-monotonic) which is an easy way to describe dependence 
structure. More precisely, in the comonotonic case one actually considers 

)),(),...,(),((= 1
2

1

21
1

1 nnXXX

d
UFUFUF −−−X  (A.15) 

in which now 

.:==...== 21 UUUU n  (A.16) 

It is intuitively clear that the variables )(= 1 UFX ii
−  are fully dependent, as they are maximally 

increasing in each other. Hence, we obtain that for any portfolio sum ii
XS ∑:=  in which the 

risky components iX  are distributed with ,iF  

)(�)( 1

1=
cxcx UFSSE i

n

i

−∑≤≤ . (A.17) 

Proofs for this result (in particular for the second inequality) can be found in many places, the 
earliest references being Meilijson and Nádas [1979] and Rüschendorf [1982]. 

While the convex upper bound is straightforward to attain, the stated convex lower bound, i.e., 
)(SE , is not attainable (sharp) in general. In fact, getting convex lower bounds that are sharp is 

a very difficult problem, in particular in higher13 dimensions. Nevertheless, in what follows we 
show that there exists an algorithm that makes it possible (at least for portfolios with 
moderate-to-high portfolio size, which is the case of interest) to find a dependence among the 
risks such that the sum S  approximately behaves as the constant ).(SE  In other words, the 
algorithm provides approximations for a convex lower bound of S . Next, we discuss how to 

                                                      
11 Convex order is a natural order in the class of admissible risks. Bernard, Jiang, and Wang [2014b] introduce the 
concept of admissible risk to describe all possible aggregate risk 𝑆 with given marginal distributions but unknown 
dependence structure. 
12 All concave distortion risk measures are consistent with convex order. 
13 For 𝑑 = 2, the convex lower bound is obtained for )(= 1

11 UFX −  and )(1= 1
22 UFX −−  as studied by 

Denuit et al. [1999] and Tankov [2011], and for 𝑑 ≥ 3 see Bernard et al. [2014b] for some results. In fact, the 
existence of a sharp lower bound is closely related to the concept of complete mixability (Wang and Wang [2011]) 
as we explain further in the text; see also Dhaene et al. [2002], Wang and Wang [2011], Embrechts et al. [2013], 
and Wang et al. [2013] for more background and more mathematical results. 
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find maximum and minimum risk bounds for portfolios when employing the variance and the 
VaR as a risk measure. 

A.2 Rearrangement Algorithm 

The Rearrangement Algorithm (RA) of Puccetti and Rüschendorf [2012a] and further extended 
in Embrechts et al. [2013] can be seen as a practical method to construct dependence between 
the variables jX  ),,1,2,=( dj 2  such that the portfolio sum dXXS ++ ...= 1  becomes as small 
as possible in convex order. We recall that this algorithm is important for finding minimum 
bounds on the variance and TVaR (the maximum bounds are easy to find and follow from 
comonotonicity in this case), and turns out to be equally important for finding bounds on VaR 
although VaR does not satisfy convex order. 

Without loss of (practical) generality, we assume that the variables jX  are discretized and take 
𝑛 values that are put in a matrix A  randomly14: 

.

...

...

...

=

21

22221

11211



















ndnn

d

d

xxx

xxx
xxx


A  (A.18) 

The matrix A  can be seen as a representation of a possible multivariate structure for 
( ).,...,,= 21 dXXXX  Importantly, we do not change the respective marginal distributions of 𝑋𝑗 

)1,2,...,=( dj  by rearranging the outcomes within a column but only the dependence between 
the 𝑋𝑗s. 

1. For 𝑖 from 1 to 𝑑, make the thi  column anti-monotonic with the sum of the other 
columns. 

2. Start again from column 1, and make it anti-monotonic with the sums of the columns 
from 2 to 𝑑. 

At each step of this algorithm, we make the −j th column anti-monotonic with the sum of 

others, so that the columns, say jX  before rearranging and jX~  after rearranging, verify 
obviously 

.~ 
1=









+≥







 ∑∑
≠

i
ji

ji

d

i
XXvarXvar  

Indeed, 

                                                      
14 For example, we may put in each column of the matrix A  the elements in increasing order, in which case we 
work with a comonotonic structure as the start situation (yielding a portfolio sum that is the largest possible in 
convex order). 
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







+







 ∑∑
≠

i
ji

ji

d

i
XXvarXvar =

1=
 

and its minimum when jX  is anti-monotonic with iji
X∑≠

. At each step of the algorithm the 

variance decreases15, it is bounded from below (by 0) and thus converges to a limit 0≥  
(convergence of a monotone sequence of real numbers). If the variance becomes zero, we have 
found a perfect mixability situation, i.e., the dependence is such that the sum becomes a 
constant and thus is as convex small as possible (see (A.14)). Otherwise, the algorithm will 
converge to a local minimum. There is then no guarantee that this minimum is really the 
minimum of the variance of the sum optimized over all dependence structure, as this minimum 
may depend on the starting point. However, in practice, it turns out that the convergence is 
very fast and one typically approximates the situation of complete mixability in a few iterations 
(unless the portfolio size is very small). In particular, the algorithm works remarkably well for 
the case of a homogeneous portfolio (in which all jX  have the same distribution). 

Remark A.1. The algorithm as described above will always stop in a situation where each 
column is anti-monotonic with the others16. 

A.3 Example of Application of the RA 

To illustrate the algorithm presented above, we show a very simple example based on a matrix 
containing eight rows and three columns (i.e., we consider a portfolio containing three risks 
that take values under eight scenarios) that we report in a matrix similar to the general case 
given by (A.18) 

.
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
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



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





 (A.19) 

                                                      
15 Note that the situation in which all of the columns are anti-monotonic with the sum of all others is an obvious 
necessary condition to have a dependence structure that minimizes the variance. 
16 At each step of the algorithm, if a column is not anti-monotonic with the sum of the others, then it is rearranged 
to make it anti-monotonic. Doing so implies that the variance decreases strictly (as the anti-monotonicity is the 
unique dependence structure that attains the minimum variance). The matrix has a finite size and therefore there 
is a finite number of possible rearrangements of this matrix, and therefore the variance can decrease strictly only a 
finite number of times. If at some point for each column the variance does not change, it means that each column 
is anti-monotonic with the sum of the others, and therefore the algorithm has stopped. 
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Here, we start from the comonotonic structure and apply the RA sequentially as described in 
the above algorithm and we find (i.e., by applying the RA sequentially on the first, second, and 
third column) that 

.
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 (A.20) 

Note that in the last matrix, we find that each column is anti-monotonic with the sum of the 
two others. 

A.4 Model Risk on Dependence on Variance 

Proposition A.2 (Bounds on the variance of i
d

i
X∑ 1=

). Let ),...,,( 21 dXXX  be a portfolio with 

respective marginal distribution .iF  Let .=
1= i

d

i
XS ∑  We have 

( ) ( ) ,)(��0=)( 1

1=








≤≤ −∑ UFvarSvarSEvar i

d

i
 

in which 𝑈 is a random variable that is uniformly distributed on (0,1). 

Proposition A.2 is a straightforward consequence of the fact that variance is consistent with 
convex order and the convex ordering relation (A.17). Hence, the lower bound that we propose 
here corresponds to the case in which the portfolio sum is constant, i.e., we have the situation 
of complete mixability as in Wang and Wang [2011]. In this case, we say that the stated lower 
bound is “sharp”, as there exists a dependence structure among the risks  such that the sum 
is constant and exhibits zero variance exactly. As explained above, the RA attempts to achieve 
this situation but this is not always possible, in which case the stated lower bound in 
proposition A.2 is not sharp. In any case, the RA can be seen as a method to get an 
approximation for the sharp convex lower bound. 

Let us illustrate these bounds with the example of eight observations presented above. The 
maximum variance is obtained when the risks exhibit a comonotonic dependence (see (A.19)) 
and we find 

iX
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.
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As for the minimum variance, after applying the RA in (A.20) we find as output, 
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We see that the lower bound in proposition A.2 is not attained in this particular case, i.e., there 
will be no dependence structure among 1X , 2X  and 3X  such that the sum is constant. 
However, the output of the RA can still be seen as a very good approximation for the sum that 
is smallest possible with respect to convex order. In other words, the algorithm makes it 
possible to find approximate (sharp) lower bounds for the variance. 

A.5 Model Risk on Dependence on VaR 

As comonotonicity is the worst-case dependence according to risk-averse decision makers, it is 
intuitive that, similar to the case of the variance, this dependence yields the maximum VaR of a 
portfolio. We will see, however, that this intuition is wrong in general. Let us first observe that 
for any sum )(=

1= i
d

i
XS ∑  and 1,<<0 p  

( ) ( )SS pp TVaR�VaR ≤  (A.21) 
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
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i
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Similarly, one finds that 

( )SUFA pi

d

i
p VaR�)(LTVaR:= 1

=1
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 −∑  (A.23) 
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where we have defined the left tail value-at-risk (LTVaR) at level p  1)<<(0 p  as 

.d][VaR
1=)(LTVaR

0
uX

p
X iu

p

ip ∫  (A.24) 

Note that for TVaR and LTVaR, 
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In summary, we then obtain the following result. 

Theorem A.3 (Bounds on the VaR of i
d

i
X∑ 1=

). Let ),...,,( 21 dXXX  be a portfolio with respective 
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d

i
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≤  (A.26) 

These bounds are given and proved in Bernard et al. [2013b]. The question then is if these 
bounds can be sharp. To deal with this problem let us note that 
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Hence, in order to attain the upper bound 𝐵, the idea is to start with the comonotonic 
dependence and next change it such that the inequality (A.26) turns into an equality. As 𝑇𝑇𝑇𝑇𝑝 
is the average of all upper 𝑉𝑉𝑉𝑞s on the interval [𝑝, 1], it is clear that the equality is obtained if 

the VaR of the comonotonic sum )(1
1=

UFi
d

i
−∑  becomes constant on [𝑝, 1] (by changing this 

comonotonic dependence). Let iG  denote the distribution of iF  when restricted17 to the upper 
𝑝-part of iF . In order to attain the upper bound, one thus needs to find a dependence between 
the risks (now with marginal distributions iG ) such that the corresponding sum becomes 
constant (i.e., the risks are completely mixing). In general, the mixing property does not hold 
and the stated bounds are thus not sharp. However, it is now clear that (approximations of) 
sharp VaR bounds are obtained by finding a dependence between the risks (with marginal 
distributions iG ) such that the corresponding sum becomes as convex small as possible (see 
also Bernard et al. [2013b]). A similar reasoning shows that in order to reach the stated lower 
bound as closely as possible, one should change the comonotonic dependence such that the 
quantile function of the comonotonic portfolio sum becomes as flat as possible on the interval 

].[0, p  

We build on this idea to propose a practical algorithm to approximate sharp bounds. Hence, let 
us show how to find approximate sharp bounds with the discrete example discussed above 

                                                      
17 Formally, iG  is the distribution of )(1 VFi

− , where V  is uniformly distributed on ,1].[q  
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when the level 𝑝 used to assess the VaR is 5/8. Note that we start from the comonotonic 
structure in the matrix. 
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We then apply the RA in the three corresponding rows. 
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So that the sums are respectively 9, 9 and 10 and thus the maximum VaR is 9. To obtain the 
minimum VaR, one works on the lower values of each 𝑋𝑖 and applies the RA on these values 
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Applying the RA as described above 
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so that the values of the sums are 4,3,3,3, and 3. Therefore the minimum VaR is 4. 
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Appendix B – Model Risk of Dependence when Aggregating Risks and Model 
Risk Quantification 

In this appendix, we present a framework which allows practical quantification of model risk 
(and was developed in Bernard and Vanduffel [2015a]). We assume that risk modellers have 
developed an “as-good-as-possible” multivariate model for a certain portfolio ),...,,( 21 dXXX . 
However, no model is perfect and we want to assess to what extent misspecification of the 
proposed model affects the risk measurement of .= ii

XS ∑  Importantly, unlike in appendix A, 

we no longer ignore the available information on dependence. Our framework includes an 
algorithm allowing actuaries to deal with model risk in a very practical way, as we will show in 
full detail. 

These results make it possible to identify risk measures for which additional information of a 
well-fitted multivariate model reduces the model risk significantly, making them meaningful 
candidates for use by risk managers and regulators. For instance, we observe from numerical 
experiments that the portfolio VaR at a very high confidence level (as used in the current Basel 
regulation) might be prone to such a high level of model risk that, even if one knows the 
multivariate distribution nearly perfectly, its range of possible values remains wide. In fact, one 
may then not even be able to reduce the model risk as computed in Embrechts et al. [2013] 
(see also appendix A) where no information on the dependence among the risks is used at all. 

The idea pursued in our approach is intuitive and corresponds to real-world situations. Let us 
assume that we have observed 𝑁 𝑑-dimensional vectors of observations Nidii xx 1,...,=1 )},...,{(  and 
that a multivariate model has already been fitted to this data set. In other words, there is a joint 
distribution of ),...,,( 21 dXXX  available (benchmark model). However, we are aware that the 
model is subject to misspecification, especially due to lack of data. Hence, we split ℝ𝑑  into two 
subsets: ℱ will be referred to as the “fixed” or “trusted” area and 𝒰 as the “unfixed” or 
“untrusted” area. 𝒰 reflects the area in which the data are not considered trustworthy (rich) 
enough to conclude that the fitted model is appropriate (in that area). Note that 

ℝ𝑑 =  ℱ ∪ 𝒰. 

If one has perfect trust in the model, then all observations reside in the “trusted” part (𝒰=∅) 
and there is no model risk. On the contrary, ℱ =  ∅ when there is no trust in the fit of the 
dependence, which corresponds to the case studied by Embrechts et al. [2013] (see also 
appendix A). 

A closely related problem has already been studied for two-dimensional portfolios (𝑑 = 2) 
when some information on the dependence (copula) is available; see for example Tankov 
[2011], Bernard et al. [2012], and Bernard et al. [2013a]. Tankov [2011] uses extreme 
dependence scenarios to find model-free bounds for the prices of some bivariate derivatives, 
whereas Bernard et al. [2014] and Bernard et al. [2014]18 use such scenarios to determine 
optimal investment strategies for investors with state-dependent constraints. While both 
applications show that finding bounds on copulas in the bivariate case can be of interest, risk 
                                                      
18 This paper received the 2015 Redington prize from the SOA. 
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management typically involves more than two risks. Unfortunately, finding bounds on copulas 
in the general 𝑑−dimensional case in the presence of constraints is not only more difficult but 
also less useful for risk management applications. The reason is that when 𝑑 > 2, in most 
cases, the worst copula (under constraints) of a vector ),...,,( 21 dXXX  does not give rise to the 

highest possible value of the risk measure at hand of ,=
1= i

d

i
XS ∑  because the marginal 

distributions also have an impact; see e.g., Bernard et al. [2014b] for illustrations of this 
feature. 

In addition, there are very few papers in the literature that deal explicitly with high-dimensional 
problems and the presence of (partial) information on the dependence structure: Rüschendorf 
[1991], Embrechts and Puccetti [2010b], and Embrechts et al. [2013] consider the situation in 
which some of the bivariate distributions are known, Denuit et al. [1999] study VaR bounds 
assuming that the joint distribution of the risks is bounded by some distribution; and Bernard et 
al. [2013b] compute VaR bounds when the variance of the sum is known. They are able to show 
how the information on the variance of the aggregate risk allows one to reduce the distance 
between the maximum VaR and the minimum VaR significantly. Moreover, they provide an 
algorithm (extended RA) that can be used by actuaries to assess VaR bounds (and thus model 
risk on VaR assessment) in a very practical way when only the variance of the aggregate risk is 
known. 

The set-up in all of these papers is sometimes hard to reconcile with the information that is 
available in practice; or, it does not make use of all available dependence information. 
Furthermore, while the bounds that are proposed in these papers might be sharp (attainable), 
they are often hard to compute numerically, especially for higher dimensions with 
inhomogeneous risks. Note also that the bounds obtained do not always make it possible to 
strengthen the unconstrained bounds in a significant way, suggesting that additional 
dependence information is needed in order to obtain better bounds; see also Wang and Wang 
[2011], Embrechts et al. [2013], Wang et al. [2013], and Bernard et al. [2014b] for related 
results. 

Hence, in this final section, we study bounds for risk measures of the aggregate risk 𝑆 by using 
information on the multivariate joint distribution of its components 𝑋𝑖 (which embeds 
information on the dependence) rather than using copula information. We propose two 
methods for deriving bounds on risk measures. The first method could be non-parametric, it 
builds on the RA of Embrechts et al. [2013] and allows one to find sharp bounds. The second 
method provides analytic, simple bounds but may not be sharp. In practice, we also show 
through examples that analytical bounds are close to being sharp. 

The outline of this section is as follows. First, we present the practical method using the RA 
(section B.3). This method can be performed directly using the data at hand (without fitting a 
model), so that in this case, model risk can be assessed in a fully non-parametric way. This 
method builds on the rearrangement algorithm that was recently developed by Puccetti and 
Rüschendorf [2012a] and further studied by Embrechts et al. [2013]. It relies on a discretized 
version of the problem described above and uses a matrix representation to approximate the 
worst-case dependence structures. We then give the analytical form and illustrate it by 
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simulations of N(0,1) risks and Pareto risks in section B.4. We provide bounds that can be 
computed directly (using, for instance, Monte Carlo simulations) but that may not be sharp. Our 
numerical results indicate that in high dimensions the bounds computed using the direct 
method in section B.4 are close to the non-parametric bounds as computed in section B.3. In 
other words, while finding sharp bounds is theoretically a difficult problem, the numerical 
illustrations suggest that the algorithm that we propose in section B.4 leads to nearly sharp 
bounds. The numerical results also show that the new bounds typically outperform the 
(unconstrained) ones already available in the literature and thus allow for more realistic 
assessment of model risk. However, model risk remains a significant concern, especially when 
using a risk measure that focuses on “tail-type” events, such as the VaR. 

B.1 Theoretical Setting and Assumptions 

Let ),...,,( 21 dXXX  be some random vector of interest. Let ℱ ⊂  ℝ𝑑 and 𝒰 =  ℝ𝑑\ℱ. We 
assume that we know 

i. the marginal distribution iF  of iX  on ℝ for 𝑖 = 1, 2, … ,𝑑; 

ii. the distribution of ),...,,( 21 dXXX  | { ),...,,( 21 dXXX  ∈ ℱ}; and 

iii. the probability ∈),...,,((:= 21 df XXXPp ℱ), as well as 𝑝𝑢  := P((𝑋1,𝑋2, … ,𝑋𝑑  ∈  𝒰) =
1 −  𝑝𝑓 . 

The joint distribution of ),...,,( 21 dXXX  is thus not completely specified (unless ℱ =  ℝ𝑑 and 

𝒰 =  ∅). Consequently, risk measures (e.g., the VaR) of the aggregate sum i
d

i
X∑ 1=

 cannot be 

computed precisely. In fact, there are many vectors ),...,,( 21 dYYY  that agree with 
),...,,( 21 dXXX  for the properties (i), (ii), and (iii) but have a different risk measure of their 

sum. In what follows, we are interested in finding the extreme possible values of the risk 
measure at hand, as the gap between the minimum and the maximum can be useful in 
measuring model risk. Formally, we use the following definition of model risk. This definition is 
in the same spirit as in Barrieu and Scandolo [2015]. 

Definition B.1 (Model risk). Let ),...,,( 21 dXXX  be a random vector satisfying (i), (ii), and (iii) 

and assume that one uses a (law-invariant) risk measure 𝜚(. ) to assess the risk of i
d

i
X∑ 1=

. 

Define 

 
where the supremum and the infimum are taken over all other (joint distributions of) random 
vectors ),...,,( 21 dYYY  that agree with (i), (ii), and (iii). The model risk that one underestimates 
the risk by computing a direct estimate of 𝜚(∑𝑋𝑖) in some chosen benchmark model (i.e., when 
some multivariate distribution for ),...,,( 21 dXXX  has been specified) is defined as 
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 (B.28) 

and, similarly, the model risk for overestimation is given as 

 (B.29) 

The rest of this section aims at obtaining the maximum and minimum possible values 𝜚ℱ+ and 
𝜚ℱ− of 𝜚(∑ 𝑋𝑖𝑑

𝑖=1 ). The recent literature on model risk estimation has dealt mainly with the case 
in which there is full uncertainty on the dependence among the risks iX ),1,2,...,=( di  i.e., 
when ℱ =  ∅ (Appendix A where we reviewed the work of Embrechts et al. [2013] with respect 
to VaR. See also Bernard et al. [2014b] regarding a convex risk measure). In this section, we 
consider the case in which information on the dependence translates into joint distributions 
that are partially known. 

In this respect, it will be useful to consider the indicator variable 𝕀 corresponding to the event  
“ ),...,,( 21 dXXX  ∈ ℱ” 

 (B.30) 

so that one can express the probabilities that a random vector takes values in ℱ resp. in 𝒰 as 

 (B.31) 

Let us also introduce a standard uniformly distributed random variable 𝑈 independent of the 
event “ ),...,,( 21 dXXX  ∈ ℱ” (and thus also independent of 𝕀) as well as a random vector 

),...,,( 21 dZZZ  defined by 

 (B.32) 

where 1
),...,2,1(|

−
∈UdXXXiXF  denotes the (left) inverse of the distribution function 

 
Note that )(1

),...,2,1(| xF
dXXXiX

−
∈U  can be computed, as the marginal distribution of iX  is known and 

the joint distribution of ),...,,( 21 dXXX  is known on ℱ (see the properties (i) and (ii)). Further, 
all iZ  )1,2,...,=( di  are increasing in the (common) variable 𝑈, and thus ),...,,( 21 dZZZ  is a 
comonotonic vector with known joint distribution. Define also 

 (B.33) 
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Hence, T  is a random variable with distribution )(
),...,2,1(|

xF
dXXXiX

i
F∈∑ . 

While most of our results hold generally or can be extended in a straightforward way, we will 
focus on bounds for the variance, the VaR, and the TVaR (which have been defined in the 
previous section in (A.21), (A.22) and (A.24)). 

B.2 Practical Framework for the Non-Parametric Approach 

We follow the same setting as already introduced in appendix A. We have N  observations of 
the 𝑑-dimensional vector ),...,,( 21 idii xxx  for .1,...,= Ni  Denote by )(= ijxM  the corresponding 

dN ×  matrix. These N  observations may simply be N  observed data vectors or N  simulated 
vector values obtained from a fitted multivariate distribution of ),...,,( 21 dXXX . In both cases, 

each observation ),...,,( 21 idii xxx  occurs with probability 1
𝑁

 naturally (possibly involving 
repetitions). We assume that the matrix 𝑀 contains enough data to allow for an accurate 
description of the marginal distributions of kX  )1,2,...,=( dk  so that the matrix 𝑀 can 
effectively be seen as a representation of the random vector of interest ),...,,( 21 dXXX . Define 

NS  by =)(iSN  ik
d

k
x∑ 1=

for ).1,2,...,=( Ni  In other words, NS  can be seen as a random variable 

that takes the value )(iSN  in “state” 𝑖 for .1,2,...,= Ni  In general, it might be difficult to find 

sharp bounds for risk measures of ii
XS ∑= . The purpose of what follows is to deal with this 

problem using the “sampled” counterpart NS  of ,S  rather than S  itself. 

As in the theoretical setting presented above, we suppose that the joint distribution of 
),...,,( 21 dXXX  is not completely specified. In the context of the matrix representation 𝑀 for 

the vector ),...,,( 21 dXXX , we assume that the matrix 𝑀 is effectively split into two parts. 
There is a submatrix ℱ𝑁 of trusted observations ),...,,( 21 idii xxx  and 𝒰𝑁 consists of the rest of 
the observations. In the sequel, the set ℱ𝑁 will be referred to as the “fixed” or “trusted” part 
and 𝒰𝑁 as the “untrusted” part. In the case in which one has perfect trust in all observations, 
the “untrusted” part contains no elements (𝒰𝑁 = ∅) and NS  can be used to assess the risk of 𝑆. 
By contrast, if one has no trust in the observed dependence, then ℱ𝑁 = ∅. In this case, the 
observations ),...,,( 21 idii xxx  are useful only in modelling marginal distributions kF  

)1,2,...,=( dk  and do not allow for conclusions regarding the dependence. It is then important 
to observe that rearranging the values ikx  )1,2,...,=( Ni  within the −k th column does not 
affect the empirical marginal distribution of kX  but only changes the observed dependence 
(interaction between elements of different columns). 

Let us denote by f  the number of elements in ℱ𝑁 and by u  the number of elements in 𝒰𝑁, 
such that 

.= ufN  +  
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Without any loss of generality, it is convenient to modify the matrix 𝑀 by changing the order of 
the rows so that the “trusted area” corresponds to the f  first rows and the untrusted area 
corresponds to the last ones. By doing so, we have only reallocated the states Ni 1,2,...,= , 
without impact on the adequacy of 𝑀 to describe the distributional (law-invariant) properties 
of ).,...,,( 21 dXXX  Similarly, as per definition of the submatrix 𝒰𝑁, we are allowed to rearrange 
the values within the columns of 𝒰𝑁 (and thus within the corresponding parts of 𝑀), as this 
operation generates a new matrix that is considered as trustworthy as the initial one (note, 
indeed, that we do not know the dependence between the iX , conditionally on 

∈),...,,( 21 dXXX  𝒰). 

Without loss of generality, we can thus always assume that the matrix 𝒰𝑁 depicts a 
comonotonic dependence (in each column, the values are sorted in decreasing order, that is, 
such that k

u
mkmkm xxx


≥≥≥  ...  
21

 for all dk 1,2,...,= ). Finally, for ℱ𝑁 (and thus also for the 

corresponding part of 𝒳𝑁) we can assume that the f  observations )..., 21 djijiji xxx  appear in 

such a way that for the sums of the components, i.e., djijijij xxxs +++ ...:= 21  ( ),1,2,...,= fj   it 

holds that ≥1s 2s ≥...≥
f

s . From now on, the observed data points are reported in the 

following matrix 𝑀 

 (B.34) 

where the grey area reflects ℱ𝑁 and the white area reflects 𝒰𝒩. The corresponding vectors f
NS  

and u
NS  consist of sums of the components for each observation in the trusted (respectively 

untrusted) part: 

 (B.35) 
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While 1s ≥ 2s ≥...≥
f

s  are trusted, the sums is~  change when the choice of dependence in 𝒰𝑁 

is varied. In fact, the set },...,{ 1 f
ii   can be seen as the collection of states (scenarios) in which 

the corresponding observations are trusted, whereas the set },...,{ 1 u
mm   provides the states in 

which there is doubt with respect to the dependence structure. 

For pedagogical purposes, we now provide a simple example of this set-up. It will be used 
throughout this section to illustrate each algorithm that we propose. This toy example is not 
meant to represent a realistic set of observations since, in true applications, there would be a 
large number of observations (here 𝑁 = 8) and possibly a large number of variables (here 

)3=d . The eight observations are given as follows, with three observations trusted ( 3=f ), 
which appear in the grey area of the matrix: 

 (B.36) 

Without loss of generality we can then consider for further analysis the following matrix 𝑀 and 
the vectors of sums f

NS  and u
NS , as follows: 

 (B.37) 

Finally, with some abuse of notation (completing by 0 so that f
NS  and u

NS  take eight values), 
one also has the following representation of NS : 

NS  = 𝕀𝑆𝑁
𝑓 + (1 −  𝕀)𝑆𝑁𝑢, (B.38) 

where 𝕀 =1 if ),...,,( 21 idii xxx  ∈ ℱ𝑁 ).1,2,...,=( Ni  In fact, f
NS  can be readily seen as the sampled 

counterpart of the 𝑇 that we used previously (see definition B.33), whereas u
NS  is a 

comonotonic sum and corresponds to the sampled version of i
d

i
Z∑ 1=

. In this last section, we 

aim at finding worst case dependence structures allowing for a robust risk assessment of the 
portfolio sum 𝑆 (𝑆𝑁). This amounts to rearranging the outcomes in the columns of the 



Research Paper April 2016 

40 

untrusted part 𝒰𝑁 such that the risk measure at hand for NS  becomes maximized (resp. 
minimized). 

B.3 Bounds on a Given Risk Measure 

In this section, we discuss the sharpness19 of upper and lower bounds for the three risk 
measures defined earlier, namely the variance, TVaR, and VaR. 

We discussed analytical bounds and sharpness of these bounds in the previous section, and in 
particular in proposition A.2 that gives unconstrained bounds for variance, and in 
proposition A.3 that gives unconstrained bounds for VaR. They can be naturally extended to the 
case under study here with constraints. 

B.3.1 Theoretical Bounds on Variance and Tail Value-at-Risk 

The next proposition gives easy-to-compute upper and lower bounds for the variance of a 
portfolio sum i

d

i
X∑ 1=

. 

Proposition B.2 (Bounds on the variance of i
d

i
X∑ 1=

). Let ),...,,( 21 dXXX  be a random vector 

that satisfies properties (i), (ii), and (iii), and let 𝕀 and ),...,,( 21 dZZZ  be defined as in (B.30) and 
(B.32). We have 

 
The proof of proposition B.2 can be found in Bernard and Vanduffel [2015a]. The stated upper 
and lower bounds in proposition B.2 are intuitive and extend proposition A.2 in a natural way. 
When computing the variance of the portfolio sum i

d

i
X∑ 1=

, one needs to consider the events 

),...,,( 21 dXXX  ∈ ℱ and ),...,,( 21 dXXX  ∈ 𝒰 separately. The distribution of i
d

i
X∑ 1=

 is known 

on the event { ),...,,( 21 dXXX  ∈ ℱ} , but unknown on the event { ),...,,( 21 dXXX  ∈ 𝒰}. On 𝒰, 

one then substitutes sum ii
X∑  by the constant )( ii

ZE∑  (to compute the lower bound and 

thus to minimize variance) and by the comonotonic sum ii
Z∑  (to compute the upper bound 

and thus to maximize variance). Note in particular that when 𝒰 = ∅, the upper bound is equal 
to the lower bound and there is no model risk. 

Next, we discuss bounds for the TVaR as they are similar to the variance (because both 
measures are consistent with convex order). 

Proposition B.3 (Bounds on the TVaR of ∑ =

d

1i iX ). Let ),...,,( 21 dXXX  be a random vector that 

satisfies properties (i), (ii), and (iii), and let 𝕀 and ),...,,( 21 dZZZ  as defined in (B.30) and (B.32). 
We have that 
                                                      
19 Recall that a bound on a risk measure is “sharp” if there exists a dependence structure among the risks such that 
this bound is attained. 



Research Paper April 2016 

41 

 
There is no model risk (the bounds reduce to the same value) when 𝒰 = ∅. 

Some of the bounds stated in propositions B.2 and B.3 can be sharp. In particular, the upper 
bounds for the variance and for the TVaR stated in propositions B.2 and B.3 are sharp, without 
further conditions. Note, indeed, that the multivariate vector 

 (B.39) 

satisfies conditions (i) and (ii). In contrast, the stated lower bounds may not be sharp because 
𝕀𝑋𝑖 + (1 −  𝕀)𝐸(𝑍𝑖) is usually not distributed with iF  ).1,2,...,=( di  In order to get close to the 
stated lower bounds, one should try to modify the dependence of the vector ),...,,( 21 dZZZ  
such that dZZZ +++ ...21  becomes constant (and thus equal to ))(...)()( 21 dZEZEZE +++ . 
We use this insight to propose an algorithm below that makes it possible to approximate the 
sharp bounds when the risk measure used is the standard deviation or the TVaR. 

B.3.2 Practical Bounds on Standard Deviation and TVaR 

From proposition B.2 it is clear that in order to maximize the variance of NS  one needs a 
comonotonic scenario on 𝒰𝑁. However, we have already initialized a comonotonic structure 
(without loss of generality), and the corresponding values of the sums are exactly the values is~  

)1,2,...,=( ui   reported for u
NS  in (B.35). The upper bound on variance is then computed as 

,)~()(1 2

1=

2

1= 







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
−+− ∑∑ ssss
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i



 (B.40) 

where the average sum s  is given by 

.~1=1=
1=1=1=1= 






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 (B.41) 

To achieve the minimum variance bound found in proposition B.2, the values of u
NS  must be as 

close as possible to each other; ideally, u
NS  must be constant. In this regard, the concept of 

complete mixability appears as a theoretical device. “Complete mixability” refers to the 
dependence structure that makes the sum u

NS  constant (Wang and Wang [2011]). To make this 
the case, in practice, we apply the rearrangement algorithm of Embrechts et al. [2013] to the 
matrix 𝑈𝑁 (untrusted part) to render it as close as possible to the complete mixability condition. 
For completeness, the algorithm is presented in section A.2. Denote by m

is~  the corresponding 
values of the sums of u

NS  after applying the RA. We then compute the minimum variance as 
follows: 
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,)~()(1 2
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 (B.42) 

where s  is computed as in (B.41). 

We illustrate the upper and lower bounds (B.40) and (B.42) for the variance derived above with 
the matrix 𝑀 of observations provided in (B.37). We then use the comonotonic structure for 
the untrusted part of the matrix 𝑀 and compute the vectors of sums f

NS  and u
NS  as defined 

above in (B.37). The average sum is s  = 5.5. The maximum variance is equal to 

8.75.)~()(
8
1 2

5

1=

2
3

1=

≈







−+− ∑∑ ssss c

i
i

i
i

 

For the lower bound, we apply the RA to the 𝑈𝑁 and we obtain 

 (B.43) 

With an average sum 5.5=s , the minimum variance can be calculated as 

2.5.)~()(
8
1 2

5

1=

2
3

1=

≈







−+− ∑∑ ssss m

i
i

i
i

 

Assume that we want to fix the TVaR at probability level 𝑝, so that, for ease of exposition, 

),(1:= pNk −  (B.44) 

where 𝑘 is an integer. Similarly to the case of maximizing the variance, it follows from 
proposition B.3 that in order to obtain the maximum TVaR one needs a comonotonic scenario 
on 𝒰𝑁. Hence, we merely need to select the 𝑘 highest values from f

NS  and u
NS  as computed in 

(B.35). Let us label these values by ∗
1s , ∗

2s ,..., ∗
ks  (ranked in decreasing order), and we can then 

easily compute the maximum TVaR at probability level 𝑝. Also, the minimum TVaR is obtained 
similarly to the minimum variance. First, apply the RA to the untrusted part of the matrix 𝑈𝑁 to 
render the variance of the (new) sum u

NS  as small as possible. Then, select the 𝑘 highest values 

out of f
NS  and u

NS  , say: ∗
1s , ∗

2s ,..., ∗
ks  (ranked in decreasing order) and compute the minimum 

TVaR. 

Let us consider the previous example again. Let us choose 𝑝 = 5/8, so that 𝑘 = 3. The highest 
𝑘 = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67). After application of 
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the RA, we obtain (B.43) for u
NS  and thus the highest three outcomes that we observe for u

NS  
and f

NS  are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7. 

B.3.3 Theoretical Bounds on Value-at-Risk 

VaR is a widely used risk measure in financial services. The following proposition provides 
bounds on VaR. 

Proposition B.4 (VaR Bounds for ∑=

d

i iX
1

). Let ),...,,( 21 dXXX  be a random vector that satisfies 

properties (i), (ii), and (iii), and let 𝕀, ),...,,( 21 dZZZ  and 𝑈 be defined as in (B.30) and (B.32). 
Define the variables iL  and iH  as 

( ) ( )iUiiUi ZTVaRHZLTVaRL = and =  

and let 

 
Bounds on the VaR of the aggregate risk are given as 

.��
1=

pi

d

i
pp MXVaRm ≤








≤ ∑  (B.45) 

The proof can be found in Bernard and Vanduffel [2015b]. Initially, the appearance of variables 
iL  and iH  may seem somewhat odd. However, note that the variables ,iZ  which played 

crucial roles in propositions B.2 and B.3, can also be expressed as ( ),= iUi ZVaRZ  and here we 
merely use ( )iU ZTVaR  and ( )iU ZLTVaR  instead. Thus, proposition B.4 has a similar form20 to 
that of proposition B.3 resp. B.2, but the bounds proposed are usually not sharp21. We observe 
that in the case of no uncertainty (i.e., 𝒰 = ∅) there is no model risk, as 𝕀 = 1. When there is full 
uncertainty, i.e., 𝒰 =  ℝ𝑑, then 𝕀 = 0, and we are returned to the unconstrained lower bound 
on the VaR of a portfolio given in proposition A.3 (see also theorem 2.1 of Bernard, 
Rüschendorf, and Vanduffel [2013b]). Note also that the VaR bounds are not sharp in general. 

For practical calculations it might be convenient to use an alternative formulation of the stated 
VaR bounds. 

Proposition B.5 (Alternative formulation of the VaR Bounds). Let ),...,,( 21 dXXX  be a random 
vector that satisfies properties (i), (ii), and (iii), and let 𝕀, ),...,,( 21 dZZZ  and 𝑇 be defined as in 
(B.30), (B.32) and (B.33). Recall that 𝑝𝑓 = 𝑃(𝕀 = 1). Define 

                                                      
20 Note that VaR is not consistent with convex order, although there are some connections (see Bernard et al. 
[2013b] and Bernard et al. [2012]). 
21 Note, indeed, that the variables iH  and iL  are not distributed as (𝑋𝑖|𝕀 =0). 
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p1,min=2α . Then, for 𝑝 ∈ (0, 1), 

 (B.46) 

The expressions for the lower bound 𝑚𝑝 are obtained by replacing, in the above statements, 
TVaR with LTVaR. 

The proof of proposition B.5 is provided in the appendix of Bernard and Vanduffel [2015a]. We 
can illustrate proposition B.5 in a discrete setting, in which the probability space Ω has 𝑁 states. 
Assume that the event { ),...,,( 21 dXXX  ∈ ℱ} corresponds to the set },,...,{ 1 f

ωω  whereas 

),...,,({ 21 dXXX ∉  ℱ} corresponds to the set },...,{ 1 uff  ++ ωω  with Nuf = +  (𝑁 is the 

number of states). Then, 
N

p f
f


=  and 

N
p u

u
= . Assume that i

d

i
Z∑ 1=

 takes u  values 

,~...~~
21 u

sss ≥≥≥  and that 𝑇 then takes f  values 
f

sss ≥≥≥ ...21 . Specifically, assume 

𝑁 = 8, 3=f , 5=u , 𝑠1 = 8 ≥  𝑠2 = 8 ≥  𝑠3 = 3 and 

1=~3=~4=~7=~10=~
54321 sssss ≥≥≥≥ , 3/8=fp  and 5/8=up . For 𝑝 = 5/8, we apply (B.46) in 

proposition B.5 and find that 0.75=∗α  and that the maximum VaRp is equal to 
8=)(0.55 iZTVaR ∑ . These values will be confirmed by the algorithm described below. 

B.3.4 Practical Bounds on VaR 

To compute the maximum VaR, we present an algorithm that can be applied directly to the 
matrix 𝑀of the observed data, and thus leads to non-parametric bounds on the VaR. Recall that 
the first f  rows of matrix 𝑀 correspond to ℱ𝑁, whereas u  denotes the number of rows of 

𝒰𝑁 (N = f  + u ). In the algorithm, we also make use of f
NS  and u

NS , which we treat as random 
variables. To compute the VaR at probability level 𝑝, we define 

)(1:= pNk −  (B.47) 

where we assume that 𝑘 is an integer. 

The algorithm is based on proposition B.5 and on the following motivation. Recall from the 
discussion of proposition B.4 that the stated upper and lower VaR bounds are not sharp in 
general. Nevertheless, we are able to propose an algorithm to approximate sharp bounds. We 
explain this idea further. Hence, let 𝑝 ∈ (0, 1) and let us observe that, almost surely, 
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In particular22, for all 𝛼, 𝛽 in [0, 1] such that ,=)(1 ppp ff βα −+  
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where  𝛼∗ is defined as in proposition B.5 and 
f

f

p
pp

−
− ∗

∗ 1
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α
β . The critical issue is to choose 𝛼 

and 𝛽, as well as a dependence between the components of the (comonotonic) vector 
),,...,,( 21 dZZZ , such that the inequality (B.48) turns into an equality. Such an equality is clearly 

obtained when taking ∗ββ =  (thus )=αα∗  and a dependence in the vector ),...,,( 21 dZZZ  
such that 
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Hence, the best approximation for the sharp bound for ( )i
d

ip XVaR ∑ 1=
 is likely to occur when 

the quantile (VaR) function of the i
d

i
Z∑ 1=

 can be made (nearly) flat on ,1].[ ∗β  In cases in which 

this feature cannot be (nearly) obtained, it cannot be excluded that better approximations can 
be found (for example, if the quantile function i

d

i
Z∑ 1=

 can be made flat on another interval 

,1][β  in which 𝛽 is close to ∗β ). Similar reasoning shows that in order to reach the stated lower 
bound as closely as possible, one should make the quantile function of the portfolio sum as flat 
as possible on the interval ].[0, ∗β  We build on this idea to propose a practical algorithm to 
approximate sharp bounds below. 

Here, f
NS  plays the role of 𝑇 and u

NS  plays the role of i
d

i
Z∑ 1=

 (see also (B.38)). Without loss of 

generality, assume that f
NS  takes values 

f
sss ≥≥≥ ...21 . 

Algorithm for computing the maximum VaR 

1. Recall that 
N

p f
f


= . Compute }{0,max:=1 km f −  (so that 

}
1

{0,max== 1
1

f

f

f p
ppm −+


a ) and },{min:=2 kNm f −  (then }{1,min== 2

2
ff p

pm


α . 

2. Compute  𝛼∗ where  

                                                      
22 See Bernard and Vanduffel [2015a] for more details and intuition on the proof of this result. 
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3. Apply the RA to the first − ∗ u)(1 β  rows of the untrusted part 𝒰𝑁 of the matrix 𝑀, 
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 and where ⋅  denotes the floor of a number. Observe that 

fu mk  −+− ∗∗ =)(1 β  where  ∗∗ fm α=:  and note that 𝑚1  ≤  𝑚∗  ≤  𝑚2. 

4. By abuse of notation, denote the rearranged sums in the untrusted part as u
NS . This is 

the dependence that potentially achieves the maximum VaR by making 
)( u

N

u

bu
STVaR



 ∗−

 

as close as possible to 
)( u

N

u

bu
SVaR



 ∗−

. To compute this maximum possible VaR, calculate 
all (row) sums for 𝒰𝑁 and ℱ𝑁 and sort them from maximum to minimum value, 

≥≥≥≥ ksss ~...~~
21 Ns~... ≥ . Then, the VaR is 𝑠̃𝑘. 

The above algorithm is a quick way to derive potentially attainable bounds for VaR of the 
aggregate risk. It requires running the rearrangement algorithm only once. However, as the RA 
will rarely generate a perfectly constant sum on the area where it is applied, it is possible that a 
better bound might be obtained by applying step 3 to the first fmk −+  rows of the 𝒰𝑁 for 

some other m  ( ≤≤ ��1 mm ).2m  

Illustration of the algorithm for obtaining the maximum VaR in the example with 𝑑 = 3, 
𝑁 =  8, 𝑘 =  3 with the same matrix 𝑀 given in (B.37) so that 3=f  and 5=u . In this case, 

0.75=∗α , so the theoretical maximum VaR is equal to TVaR 8=
1 fp

fpp

−
∗− α . In the algorithm, 

2=2.25==  ∗∗ fm α  and the maximum VaR is obtained for 2=∗m  (that is, by applying the 
RA to the first 2=fmk −+ ∗  rows of the untrusted portion of the matrix). By going through all 
possible values of 𝑚, we show below that this is indeed the optimal value.  

We find for the minimum and maximum value for 𝑚, 

3,=3)(3,8min=0,=(0,0)max= 21 −mm  

so that the number of rows to which one can consider applying the RA is between 0 and 3, as 

3.=0,= 21 ff mkmk  −+−+  

The first VaR that we compute by taking three rows of u
NS  ( 3=fkm −+  with 3=m ) is equal 

to VaR=7: 
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The second value is equal to VaR=8 ( 2=fkm −+  with 2=m ) and is already the maximum 
possible value: 

 
Indeed, one more iteration ( 1=m ) will not change the value of the VaR, and two more 
iterations ( 0=m ) will lead to a lower number. 

The algorithm for computing the minimum VaR is similar to that for the maximum, where TVaR 
is replaced by LTVaR to compute ∗α . Details and an example can be found in Bernard and 
Vanduffel [2015a]. 

B.4 Example of Bounds for Risk Measures of Portfolios with Dependence Uncertainty by 
Monte Carlo 

We discuss how to simulate the analytical bounds for variance, TVaR and VaR (obtained in the 
respective propositions B.2, B.3, and B.5 with some examples. 

B.4.1 Bounds on Variance 

The upper and lower bounds for the variance in proposition B.2 can be computed by numerical 
integration or by Monte Carlo simulation. If the number of dimensions 𝑑 is high, then it is clear 
that the best approach to computing the theoretical bounds is to use Monte Carlo techniques 
(using simulations from the fitted multidimensional model on ℱ). We illustrate proposition B.2 
with an example. In this respect, it is appropriate to use the standard deviation as the risk 
measure and not the variance (it is clear that in this instance the bounds are the square roots of 
those presented in proposition B.2). Doing so makes it possible to compare fairly the results of 
this example with those of subsequent examples that use TVaR or VaR as the risk measure. 

Example B.6 (Multivariate normal distribution as a benchmark model). Assume that ),...,( 1 dXX  
is a random vector with standard normally distributed marginals. Furthermore, the joint 
distribution of ),...,( 1 dXX  is assumed to be a multivariate standard normal distribution with 
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correlation parameter23 𝜚 on the subset ℱ := [𝑞𝛽,. 𝑞1 − 𝛽]𝑑 ⊂  ℝ𝑑(for some 𝛽< 50%), where γq  
denotes the quantile of the standard normal random variable at probability level γ . In 
table B.1, we assume that 𝑑 = 20, and we provide the upper and lower bounds for the standard 
deviation of the portfolio sum for various confidence levels 𝛽 and correlation levels 𝜌. The first 
column (𝛽 = 0%) provides results for cases in which there is no uncertainty on the multivariate 
distribution; as such, it provides a benchmark for assessing model risk (see definition B.1). The 
last column (𝛽 = 50%) provides bounds for cases in which there is full uncertainty on the 
dependence; as such, it corresponds to the situation that is traditionally studied in the 
literature. 

 

Table B.1: In the first column, we report the standard deviation of ii
X∑20

1=
 under the 

assumption of multivariate normality (no dependence uncertainty, i.e., 𝒰 = ∅). Lower and 
upper bounds of the standard deviation of ii

X∑20

1=
 are reported as pairs (𝜚ℱ−,𝜚ℱ+) for various 

confidence levels 𝛽. We use 3,000,000 simulations. All digits reported in the table are 
significant. 

One observes from table B.1 that the impact of model risk on the standard deviation can be 
substantial even when the joint distribution ),...,( 1 dXX  is almost perfectly known, i.e., when 𝛽 
is close to zero (𝑝𝑢 is close to 0). Consider for instance 𝛽 = 0.05% and 0.=ρ  In this case, 

0.02,0.9991= 20 ≈−up , and we find that using a multivariate normal assumption (as the 
benchmark) might underestimate the standard deviation by (5.65-4.47)/4.47=26.4% and 
overestimate it by (4.47-4.4)/4.4=1.6%. It thus seems that the assumption of multivariate 
normality is not particularly robust against misspecification. Here, in fact, it clearly gives rise to 
a situation in which one is more likely to underestimate risk than to overestimate it. 
Furthermore, the example shows that adding some partial information on the dependence (i.e., 
when 𝛽 < 50%) can change the unconstrained bounds (case in which 𝛽 = 50%) and confirms 
that dependence is important when assessing the risk of a portfolio. For instance, when 

0.5%=β  and 0,=ρ , one has that 0.180.991= 20 ≈−up  and the unconstrained upper bound 
for the standard deviation shrinks by approximately 50% (from 20 to 10.6). 

                                                      
23 A multivariate standard normal distribution with correlation coefficient 𝜌 is such that the pairwise correlation is 
𝜌 for all pairs ),( ji XX  with ji ≠ . 
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Table B.2: Probability 𝑝𝑢 that ),...,( 1 dXX  takes values outside the 𝑑−cube [𝑞𝛽 , 𝑞1−𝛽]𝑑, for a 
confidence level 𝛽 and a correlation coefficient 𝜌. We use 3,000,000 simulations. 

In table B.2 we report, for the levels of correlation 𝜌 and confidence levels 𝛽 used in table B.1, 
the probability 𝑝𝑢 that ),...,( 1 dXX  takes values outside the 𝑑−cube ℱ = [𝑞𝛽 , 𝑞1−𝛽]𝑑. Doing so 
allows us to better interpret the results of table B.1 and will also be useful in understanding the 
effect of the choice of another design for the trusted area ℱ. 

In the above example, the trusted area is based solely on the use of the marginal densities, 
𝑁(0,1). More generally, assume that marginal densities have been fitted to empirical densities 

if
  for ,1,...,= di , respectively. Then, ℱ is defined as 

 (B.50) 

In the case that the rare events correspond to either the largest or the smallest outcomes of 
the risks, this approach is consistent with the use of a 𝑑-cube as trusted area. Another natural 
criterion by which to determine the trusted part of the multivariate distribution consists in 
starting from a given fitted multivariate density 𝑓 (coming, for instance, from a multivariate 
Gaussian model, a multivariate Student model, or a Pair-Copula Construction model (Aas et al. 
[2009], Czado [2010])). The trusted area is then based on the contour levels of the density. We 
refer to Bernard and Vanduffel [2015a] for more details on this point. These observations are 
also intuitive, as the standard deviation is sensitive to high outcomes and these scenarios occur 
frequently when considering the upper bound (as the tail events are then assumed to be fully 
correlated). 

B.4.2 Bounds on TVaR 

We now use the same illustrative example for the TVaR and compute the stated bounds using 
Monte Carlo simulations. 

Example B.7 (Multivariate normal distribution as a benchmark model). Table B.3 provides for 
various levels of probability level 𝑝, confidence level 𝛽, and correlation 𝜌, the bounds on TVaR. 
The results are in line with those of the previous example. Model risk is already present for 
small levels of  𝛽, but at the same time the availability of dependence information (𝛽 < 50%) 
allows for strengthening the unconstrained bounds (𝛽 = 50%) significantly. Interestingly, the 
degree of model risk also depends on the interplay between the probability level 𝑝 used to 
assess the TVaR and the degree of uncertainty on the dependence as measured by 𝛽. When 𝑝 is 
large (e.g., 𝑝 = 99.5%), a small proportion of model uncertainty (e.g., 𝛽 = 0.05%) appears to 
have a tremendous effect on the model risk of underestimation. We can explain this 
observation as follows. The TVaR is essentially measuring the average of all upper VaRs and its 
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level is thus driven mainly by scenarios in which one or more outcomes of the risks involved are 
high. These scenarios, however, are not considered as trustworthy for depicting the (tail) 
dependence with negative impact on the level of the TVaR. In fact, for a given level of 𝑝 the 
model risk of underestimation increases sharply with an increase in the level of 𝛽 and 
approaches its maximum already for small to moderate values of 𝛽. This effect is further 
emphasized when the level of 𝑝 increases. In other words, the TVaR is highly vulnerable to 
model misspecification, especially when it is assessed at high probability levels. 

 

Table B.3: 95%TVaR  and 99.5%TVaR  of ii
X∑20

1=
 are reported in the absence of uncertainty 

(multivariate standard normal model with 𝒰 = ∅). Bounds are then given for various levels of 
confidence 𝛽, correlation 𝜌, and probability 𝑝. Bounds are obtained based on 3,000,000 
simulations. All digits reported are significant. 

Similarly to the case of the standard deviation, one can also use a trusted area that is based on 
the contours of the multivariate normal distribution in order to assess the upper and lower 
bounds. As the results are similar, we do not report them in detail. 

B.4.3 Bounds on Value-at-Risk 

We here assess the VaR bounds when the benchmark model is a multivariate normal 
distribution. 

Example B.8 (Multivariate normal distribution as a benchmark model). The VaR bounds 
reported in table B.4 were obtained within a few minutes, using 3,000,000 Monte Carlo 
simulations. We make the following observations. First, model risk is clearly present even when 
the dependence is “mostly” known (i.e., 𝛽 is small). Furthermore, the precise degree of model 
error depends highly on the level of the probability 𝑝 that is used to assess the VaR. Let us 
consider the benchmark model with 𝜌 = 0 (the risks are independent and standard normally 
distributed) and 𝛽 = 0% (no uncertainty). We find that ( ) 7.35=(95%)20= 120

1=95%
−Φ∑ ii

XVaR  

and, similarly, ( ) 11.5=20

1=99.5% ii
XVaR ∑ , ( ) 14.7=20

1=99.95% ii
XVaR ∑ . However, if 𝛽 = 0.05%, then 

0.02,≈up , and the benchmark model might underestimate the 95%−VaR by  
(8.08-7.36)/8.08=8.9% or overestimate it by (7.36-7.27)/7.27=1.24%. However, when using the 
99.5%−VaR, the degree of underestimation may rise to (30.4-11.5)/30.4=62.2%, whereas the 
degree of overestimation is equal only to (11.5-11.4)/11.4=0.9%. Hence, the risk of 
underestimation is sharply increasing in the probability level that is used to assess VaR. 
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Table B.4: VaR95%, VaR99.5%, and VaR99.95% of ii
X∑20

1=
 are reported in the absence of uncertainty 

(multivariate standard normal model with 𝒰 = ∅). Bounds are then given for various levels of 
confidence 𝛽, correlation 𝜌 and probability 𝑝. We use 3, 000, 000 simulations and all digits 
reported are significant. 

Finally, note that when very high probability levels are used in VaR calculations (𝑝 = 99.95%; see 
the last three rows in table B.4), the constrained upper bounds are very close to the 
unconstrained upper bound, even when there is almost no uncertainty on the dependence 
(𝛽 = 0.05%). The bounds computed by Embrechts et al. [2013] are thus nearly the best 
possible bounds, even though it seems that the multivariate model is known at a very high 
confidence level. This implies that any effort to accurately fit a multivariate model will not 
reduce the model risk on the risk measure (and the capital requirement). 

Note that when no information on the dependence is available (𝛽 = 50%) the upper and lower 
bounds stated in proposition B.4 reduce to ( )ip

d

i
XTVaR∑ 1=

 and ( )ip
d

i
XLTVaR∑ 1=

, 

respectively, and coincide with the lower bound A and upper bound B, given by Bernard et al. 
[2013b]. Using their formulas for A and B, we find that the bounds on the VaRp of sums of 20 
independent 𝒩(0, 1) risks are 

p
pB

p
pA

−
ΦΦ

−
−−

1
))((20=,))((20=

11 φφ  

and we observe that one obtains consistency with the bounds reported in table B.4. For 
example, when 95%=p , we find that ),2.17,41.25(=),( −BA  which conforms with the 
numbers in table B.4. 

Example B.9 (Pareto distributed risks). We provide another example with Pareto distributed 
risks and we find that the same results can be found. They are even amplified. We assume the 
individual risks are all Pareto with parameter 3=θ . We assume that there are 20=d  risks 
distributed as a Pareto with parameter θ  and that their dependence is modeled by a Gaussian 
copula with parameter ρ  (pairwise correlation). Each risk has the cdf for 0>x , 

θ−+− )(11=)( xxF . 
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The VaR at level (0,1)∈p  is given by 

1)(1=)( 1/1 −− −− θppFX . 

Assuming that the trusted zone is based on each marginal being between the quantile of level 
β−1  and β  respectively 

 
where 

1)(1= 1/ −− − θ
β βθ . 

We find from the simulation of 𝑛 = 3, 000, 000 simulations of a 𝑑 = 20 Pareto variables the 
following results for the bounds on VaR. 

 

B.4.4 Further Discussion on Model Risk 

Let us consider again a random vector ),...,( 1 dXX  having standard normally distributed 
marginals all correlated with a coefficient of 10% (benchmark). We now focus on the model risk 
for underestimation and overestimation; that is, we consider the quantities 

 (B.51) 

which were introduced in Section B.4 (definition B.1 and expressions (B.28) and (B.29)). The risk 
measure 𝜚(. ) is the VaR and the TVaR, and, for the trusted area ℱ, we consider the elliptical 
contours such that 𝑃((𝑋1, … ,𝑋𝑑) ∈  ℱ) =  𝑝𝑓. 

In figure B.3, we represent the risk of underestimating and overestimating VaR and TVaR, 
respectively, at various probability levels 𝑝 using the risk measures (B.51) for model risk. From 
figure B.3, we observe that a slight misspecification of the model already leads to a potentially 
significant underestimation of VaR and TVaR. By contrast, the risk of overestimating appears to 
be less pronounced. We can explain these observations as follows. In the benchmark model, 
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the risks iX  )1,2,...,=( di  are assumed to be multivariate normally distributed, with a 
correlation coefficient of only 10%. However, in the presence of uncertainty, the risks are 
assumed to be fully dependent in the untrusted area 𝒰 when calculating the upper bound on 
TVaR and to behave as a constant when calculating the lower bound (the portfolio sum is thus 
also constant in this instance). The latter situation is closer to the one that is present in the 
benchmark model, and therefore the risk of overestimating TVaR is relatively small. Conversely, 
the risk of underestimation is rather significant. The same pattern holds true for the bounds on 
VaR, as these are based on the TVaR of a comonotonic sum and thus differ from the VaR under 
the benchmark model (risks have low correlation). 

 
Figure B.3: We assume that ),...,( 2021 XXX  is a multivariate standard distribution with pair 
correlation 0.1=ρ . Let 𝑝𝑓 = 90%. We show the model risk for overestimating or 
underestimating VaRp and TVaRp as a function of 𝑝. 

We also observe that when the probability level 𝑝 is high, the model risk of underestimating 
VaR appears to be larger than the model risk of underestimating TVaR. We can explain this 
remarkable feature as follows. For 𝑝 sufficiently large (as compared to )1 up− , the worst VaR 
and the worst TVaR of the portfolio sum are both based on the untrusted scenarios, as the very 
largest outcomes for the portfolio sum usually correspond to the untrusted scenarios. Hence, in 
this case, the worst VaR and the worst TVaR tend to be close to each other24. However, the 
difference between the modelled TVaR and the modelled VaR, naturally, remains strictly 
positive. The two effects together imply that the model risk of underestimating VaR is more 

                                                      
24 Puccetti and Rüschendorf [2012a] show that under mild conditions for a given set of scenarios, the worst VaR 
behaves asymptotically as the worst TVaR. 
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significant than the risk of underestimating TVaR when 𝑝 is very large. The example thus 
suggests that VaR is more sensitive to model risk than TVaR. It also illustrates that a model may 
provide a good fit for the data on the whole but still not be suitable for estimating VaR at high 
probability levels. 
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Appendix C – Definitions of Mathematical Notations 

Symbol Explanation Examples 

𝑋𝑖   
Individual risk (𝑥𝑖𝑗𝑑 in 
matrix) 𝑆 = ∑ 𝑋𝑖𝑑

𝑖=1   
S Aggregate risk (𝑠𝑖 in matrix) 

𝚾 Portfolio loss vector 𝚾 = (𝑋1, … ,𝑋𝑑)  

{...} Set {(𝑋1𝑖, … ,𝑋𝑑𝑑)}𝑖=1,…,𝑁 ,  
A set of N observed d-dimensional vectors  

∅ Empty set ℱ =  ∅  

ϱ Risk measure VaR, TVaR, etc. 

K Capital requirement  

()+ or ()+ “Shortfall” �𝑆 −  𝜚(𝑆)�
+
≔ max(0, 𝑆 −  𝜚[𝑆]) , 

�𝑆 −  𝜚(𝑆)�
+

  , the excess loss not covered by the 
insurer, is defined as 𝑆 −  𝜚[𝑆], if it is bigger than 0. := Is defined as 

∈  Is an element of b ∈ ℝ ,     
b is an element of the real numbers 

𝑇�   Average of scoring function Scoring function 𝑇: squared error, absolute error, etc. 

argmin
𝑥

 Argument of the minimum 
𝑥∗ = 𝑎𝑎𝑎min

𝑥
𝐸(𝑇(𝑥, 𝑆)) , 

point 𝑥 for which 𝐸(𝑇(𝑥, 𝑆)) attains its minimum 
value 

𝐶 Copula function  

𝑈 Uniform distribution 

))(),...,(),((= 1
2

1

21
1

1 dnXXX

d
UFUFUF −−−X   

d
=  Equality in distribution 

𝐹𝑌  ,𝐹𝑌−1 CDF, Inverse CDF of 𝑌 

 ≤𝐶𝐶  Convex order 𝑋 ≤𝐶𝐶 𝑌 , 
“X and Y have same mean but Y has larger variance” 

𝑋𝚥�  𝑋𝑗 after rearrangement (RA)  

⋃   Union of ... or ... ℝ𝑑 =  ℱ ∪ 𝒰  
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ℱ “Fixed” area, trusted 

𝒰 “Unfixed” area, untrusted 

⊂  Subset ℱ ⊂  ℝ𝑑  

\ Excluding 𝒰 =  ℝ𝑑\ℱ  

| Such that (𝑋1,𝑋2, … ,𝑋𝑑) | {(𝑋1,𝑋2, … ,𝑋𝑑) ∈ ℱ}  

𝜚+  
Least upper bound 
(Supremum) of ϱ 𝜚ℱ+: = sup {𝜚(∑ 𝑌𝑖𝑑

𝑖=1 )}  

𝜚−  Greatest lower bound 
(Infimum) of ϱ 𝜚ℱ−: = inf {𝜚(∑ 𝑌𝑖𝑑

𝑖=1 )}  

𝕀 Indicator variable 𝕀 =1, if ),...,,( 21 idii xxx  ∈ ℱ𝑁 ).1,2,...,=( Ni  

⌊.⌋ Floor  

𝑍𝑖   ,𝑇𝑖 
Random variables in unfixed 
area, fixed area 

𝑍𝑖 = 𝐹𝑋𝑖|(𝑋1,𝑋2,…,𝑋𝑑)∈𝒰
−1 (𝑈) ,  𝑇𝑖 = 𝐹𝑋𝑖|(𝑋1,𝑋2,…,𝑋𝑑)∈ℱ

−1 (𝑈) 

𝑁 N observations (scenarios)  

ℓ𝑓 , ℓ𝑢 Number of elements in  
ℱ, 𝒰 

𝑁 = ℓ𝑓 + ℓ𝑢  

𝑝𝑓 ,𝑝𝑢 Probability of being in ℱ,𝒰 𝑝𝑓 = ℓ𝑓/𝑁 , 𝑝𝑢 = ℓ𝑢/𝑁 

𝑝 Probability level 𝑉𝑉𝑉𝑝 ,   𝑘 ∶= 𝑁(1 − 𝑝) 

𝑠̅ Average of s  

Ω Probability space  

𝑞𝛾 
Quantile of the standard 
normal random variable at 
𝛾 ℱ = [𝑞𝛽 , 𝑞1−𝛽]𝑑 ⊂  ℝ𝑑  

𝛽 Confidence level 

𝜌 Correlation coefficient  

∀ For all ℱ ∶= {(𝑥1𝑖, … , 𝑥𝑑𝑑) ∈ ℝ𝑑| ∀𝑗 ∈ {1,2, … ,𝑑},𝑓𝚥�(𝑥𝑗𝑗) ≥
𝜀}  𝑓 Empirical densities 

 𝜙  , Φ  
𝒩(0,1) 

PDF,CDF of  
Standard Normal 𝒩(0,1)  
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∩ Intersect ℱ = ⋂ {𝑞𝛽 ≤ 𝑋𝑘 ≤ 𝑞1−𝛽}𝑑
𝑘=1   
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