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Abstract

A hierarchical credibility model is a generalization of the Bühlmann credibility model
and the Bühlmann-Straub credibility model with a tree structure of four or more levels.
This paper aims to incorporate the hierarchical credibility theory, which is used in proper-
ty and casualty insurance, to model the dependency of multi-population mortality rates.
The forecasting performances of the five/four/three-level hierarchical credibility models
are compared with those of the classical Lee-Carter model and its three extensions for
multiple populations (joint-k, co-integrated and augmented common factor Lee-Carter
models). Numerical illustrations based on mortality data for both genders of the U.S.A,
the UK and Japan with a series of fitting year spans and three forecasting periods show
that the hierarchical credibility approach contributes to more accurate forecasts measured
by the AMAPE (average of mean absolute percentage errors). The proposed model is
convenient to implement and the predicted multi-population mortality rates can be used
to construct a mortality index for better pricing mortality-indexed securities.

Keywords : hierarchical credibility theory; Bühlmann credibility theory; Lee-Carter mod-
el; multi-population mortality model.

1. Introduction

Mortality is one of the key factors in determining the premiums and reserves of life in-
surance and annuity products and pricing mortality-linked securities, (e.g., q-forwards,
longevity bonds, survivor swaps, annuity futures, mortality options, and survivor cap-
s). Longevity risk has become a substantial issue in the human society. Over recent
decades, mortality rates have displayed a dramatic improvement. Since life annuity con-
tracts and pension plans often last for decades, with a gradual increase in life expectancy
of most developed countries, annuity providers, retirement programs and pension/long-
term care systems face a significant risk of paying more survival benefits than expected
to retirees and annuitants, which is called longevity risk. Such longevity risk could lead
to financial distress or insolvency for annuity providers, retirement programs and social
security systems. At the same time, life insurers face mortality risk due to catastrophic
mortality deterioration (e.g., the 1918 Spanish flu pandemic, and the 2004 Indian O-
cean earthquake and tsunami). To reduce mortality risk, Swiss Re issued a three-year
catastrophe mortality bond of $400 million in December 2003. The principle paid to the
investor at maturity depends on a mortality index—a specifically constructed index of
mortality rates across both genders of five countries (the US, the UK, France, Italy and
Switzerland). Therefore, building effective mortality models in order to provide accurate
mortality rates for better pricing life insurance policies, annuity products, pension plans,
social security systems and mortality-linked securities has been a matter of great urgency.
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An effective multi-population mortality model can help construct an accurate mor-
tality index on which pricing of mortality-indexed securities and derivatives can be based
to hedge mortality and longevity risks for life insurers and annuity providers. When
modelling multi-population mortality rates, although traditional mortality models can
project mortality rates separately for each population, these models do not consider a
correlation among populations. The mortality rates between females and males in a
country are highly correlated because they are exposed to the common conditions such
as public health, education systems, medical services, and living environments. The
mortality rates among developed countries or provinces/states in a country also have a
different degree of correlation due to similar exposures.

Projecting mortality rates and modelling their randomness have garnered much at-
tention in the past decades. The Lee-Carter (1992) model is the most widely cited model
in mortality prediction and applications. The CBD model, proposed by Cairns et al.
(2006), is another well-known model designed for modelling mortality rates for seniors.
Tsai and Yang (2015) related each of a series of period mortality rate sequences for con-
secutive years to that for a base year with a linear regression, and model each of the two
resulting sequences of intercept and slope parameters with a random walk with drift for
predicting mortality rates. Lin et al. (2015) proposed AR-GARCH models to forecast
mortality rates for a given age and employed a copula method to capture the inter-age
mortality dependence. Numerous extensions of the Lee-Carter and CBD models were de-
veloped. For example, Renshaw and Haberman (2006) generalized the Lee-Carter model
to a non-linear model which includes age-specific cohort effects and age-specific period
effects; Li et al. (2009) proposed an extension of the Lee-Carter model that provides
more conservative interval forecasts of the central death rate by considering individual
differences in each age-period cell; Plat (2009) gave a model that combines some nice
features of the Lee-Carter, CBD and Renshaw-Haberman models while eliminating the
disadvantages of those models; Mitchell et al. (2013) introduced a model based on the
idea of bilinear modelling of age and time from the original Lee-Carter model but it
suggested to model the change in the logarithm of central death rate instead of the level
of central death rate.

There are some extensions to the Lee-Carter model, which incorporate the dependence
between the mortality rates for multiple populations. Carter and Lee (1992) introduced
the joint-k Lee-Carter model, assuming that the mortality rates for two populations
are jointly driven by a common time-varying index. Li and Lee (2005) proposed the
augmented common factor Lee-Carter model involving common factors and population-
specific ones. Li and Hardy (2011) showed the existence of cointegration in the time
trends of mortality rates for two populations, and modelled the time trends of mortality
rates by a linear relationship, called the cointegrated Lee-Carter model.

Also, there are articles, not based on the Lee-Carter model, studying the correlation
of multi-population mortality rates. For example, Cairns et al. (2011) introduced a new
framework for modelling the joint development over time of mortality rates in a pair of
related populations with the primary aim of producing consistent mortality forecasts for
two populations. Wang et al. (2015) used time-varying copula models to capture the
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mortality dependence structure across countries, examining both symmetric and asym-
metric dependence structures. Chen et al. (2015) first filtered the mortality dynamics
of each population using an ARMA-GARCH process with heavy-tailed innovations, and
then modelled the residual risk using a one-factor copula model that is widely applicable
to high dimension data and very flexible in terms of model specification. Li et al. (2015)
proposed a systematic process for constructing a two-population mortality model and
developed two-population generalizations for each of the seven single-population mod-
els studied in Cairns et al. (2009). Li et al. (2017) introduced a new concept called
semi-coherence to produce semi-coherent mortality forecasts using a vector threshold
autoregression. Enchev et al. (2016) reviewed a number of multi-population mortality
models and developed forecasting models that produce non-diverging and joint mortality
rate scenarios.

Credibility theory is widely applied in property and casualty insurance. Bühlmann
(1967) proposed a credibility formula to determine the credibility estimate which is calcu-
lated by a weighted average of the sample mean of the past claim data of a policyholder
and the true mean of claims. Bühlmann and Straub (1970) extended the Bühlmann
model by allowing unequal number of exposure units for each risk. The claim data can
be severities or frequencies of claims, and the claim data for all policyholders in a group
can be treated as a tree structure of three levels. Tsai and Lin (2017a) incorporated
a Bühlmann credibility approach to the Lee-Carter, CBD, and Tsai and Yang (2015)
models to improve mortality forecasting performances. Tsai and Lin (2017b) proposed a
non-parametric Bühlmann credibility approach to modelling mortality rates and showed
that the approach outperforms the Lee-Carter model in forecasting performance.

Bühlmann and Gisler (2005) incorporated the idea of hierarchical structure to the
credibility theory to achieve the hierarchical credibility model. It can be seen that the
hierarchical credibility is a generalization of the Bühlmann model and the Bühlmann-
Straub model with a tree structure of more levels. Traditional mortality models for
single population group mortality data into three levels (population, age and year). In
this paper, we would like to propose a hierarchical credibility approach to modelling
multi-population mortality rates. We group the mortality data for both genders of three
developed countries into four levels (country, gender, age and year) or five levels (multi-
country, country, gender, age and year), apply the hierarchical credibility to each level to
better reflect the correlation of mortality rates among populations or genders/countries,
and compare the forecasting performances of the underlying mortality models.

The remainder of this paper proceeds as follows. Section 2 introduces the four-level
and five-level hierarchical credibility approaches to modelling multi-population mortality
rates and applies them to projecting mortality rates for six populations (both genders
of the US, the UK and Japan). Section 3 compares the forecasting performances of the
proposed three/four/five-level hierarchical mortality models and the Lee-Carter model
and its three variations (the joint-k, the cointegrated and the augmented common factor
models; see Appendix A) for multiple populations. Section 4 concludes this paper.
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Figure 1: A five-level hierarchical tree structure
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2. Hierarchical Bühlmann credibility mortality model

This section applies the hierarchical credibility idea from Bühlmann and Gisler (2005)
to propose a hierarchical credibility mortality model for multiple populations, which is
a generalization of the non-parametric Bühlmann credibility mortality model for single
population proposed by Tsai and Lin (2017b).

Figure 1 structures mortality data in a five-level hierarchical tree with the top level
being the multi-country, which consists of mortality data from C countries. Each country
is broken down into G genders (G = 2). Within each gender, there are consecutive
ages xL, · · · , xU . Finally, each age has yearly data from year tL to year tU , which is
the bottom level. Denote mc, g, x, t the central death rate for country c, gender g, age
x and year t. The Lee-Carter model and its three variations for multiple populations
use ln(mc, g, x, t) to model mortality rates. Figure 2 shows that the historical mortality
data ln(mc, g, x, t)s from the Human Mortality Database for the US, the UK and Japan
display a downward trend over year t = 1950, · · · , 2010 for x = 25, 50, 75 and Avg, where
the Avg curve is the average of ln(mc,g,x,t)s over x = 20, · · · , 84. As with the Bühlmann
credibility mortality model proposed by Tsai and Lin (2017a, b), we apply the hierarchical

credibility approach to modelling Yc, g, x, t
△

= ln(mc, g, x, t)− ln(mc, g, x, t−1), the decrement of
the logarithm of central death rate for country c, gender g and age x over [t−1, t], in order
to eliminate the downward trend (see Figure 3). Since we will use indices x = 1, · · · , X
and t = 1, · · · , T for simplifying notations, given mortality data ln(mc, g, x, t)s in an age-
year rectangle [xL, xU ] × [tL, tU ] for a population of country c and gender g, the age
span [xL, xU ] and the year span [tL, tU ] for ln(mc, g, x, t) correspond to [1, X ] and [1, T ]
for Yc, g, x, t, respectively; that is, Yc, g, x, t = ln(mc, g, xL+x−1, tL+t) − ln(mc, g, xL+x−1, tL+t−1)
for x = 1, · · · , X and t = 1, · · · , T , where X − 1 = xU − xL and T = tU − tL.

2.1 Assumptions and notations

This subsection first gives the assumptions and then the notations for conditional means,
mean, conditional variances and variances for a hierarchical tree. The following are the
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Figure 2: ln(mx, t, i) against t
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Figure 3: Yx, t, i = ln(mx, t, i)− ln(mx, t−1, i) against t
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assumptions for the hierarchical model:

• Level 0: Yc, g, x, t|Θc, g, x, t = 1, · · · , T , are independent and identically distributed
for fixed c, g and x;

• Level 1: Θc, g, x|Φc, g, x = 1, · · · , X , are independent and identically distributed for
fixed c and g;

• Level 2: Φc, g|Ψc, g = 1, · · · , G, are independent and identically distributed for fixed
c; and

• Level 3: Ψc, c = 1, · · · , C, are independent and identically distributed.

First, we denote the conditional means and the mean for levels 0–3 as follows:

• Level 0: µ1(Θc, g, x)
△

= E(Yc, g, x, t|Θc, g, x), the conditional expectation of Yc, g, x, t given
Θc, g, x;

• Level 1: µ2(Φc, g)
△

= E[µ1(Θc, g, x)|Φc, g] = E[E(Yc, g, x, t|Θc, g, x)|Φc, g], the conditional
expectation of µ1(Θc, g, x) given Φc, g;

• Level 2: µ3(Ψc)
△

= E[µ2(Φc, g)|Ψc] = E{E[µ1(Θc, g, x)|Φc, g]|Ψc}
= E{E[E(Yc, g, x, t|Θc, g, x)|Φc, g]|Ψc}, the conditional expectation of µ2(Φc, g) given
Ψc; and

• Level 3: µ4
△

= E[µ3(Ψc)] = E{E[µ2(Φc, g)|Ψc]} = E{E{E[µ1(Θc, g, x)|Φc, g]|Ψc}}
= E{E{E[E(Yc, g, x, t|Θc, g, x)|Φc, g]|Ψc}}, the expectation of µ3(Ψc).

By the law of total expectation, it is easy to show that µ4 = E[Yc, g, x, t], µ3(Ψc) =
E[Yc, g, x, t|Ψc], and µ2(Φc, g) = E[Yc, g, x, t|Φc, g].

Next, we denote the following conditional variances for levels 0–2:

• Level 0:
σ2
1(Θc, g, x)

wc, g, x, t

△

= V ar[Yc, g, x, t|Θc, g, x] = E{[Yc, g, x, t − µ1(Θc, g, x)]
2|Θc, g, x}, the

conditional variance of Yc, g, x, t given Θc, g, x where wc, g, x, t is a known exposure unit;

• Level 1: σ2
2(Φc, g)

△

= V ar[µ1(Θc, g, x)|Φc, g] = E{[µ1(Θc, g, x) − µ2(Φc, g)]
2|Φc, g}, the

conditional variance of µ1(Θc, g, x) given Φc, g; and

• Level 2: σ2
3(Ψc)

△

= V ar[µ2(Φc, g)|Ψc] = E{[µ2(Φc, g)− µ3(Ψc)]
2|Ψc}, the conditional

variance of µ2(Φc, g) given Ψc.

Last, the expected conditional variances for levels 0–2 and the variance for level 3 are
denoted as follows:

• Level 0: σ2
1

△

= E[σ2
1(Θc, g, x)] = E{wc, g, x, t · V ar[Yc, g, x, t|Θc, g, x]}, the expectation of

wc, g, x, t times the conditional variance of Yc, g, x, t given Θc, g, x;

• Level 1: σ2
2

△

= E[σ2
2(Φc, g)] = E{V ar[µ1(Θc, g, x)|Φc, g]}, the expectation of the con-

ditional variance of µ1(Θc, g, x) given Φc, g;

• Level 2: σ2
3

△

= E[σ2
3(Ψc)] = E{V ar[µ2(Φc, g)|Ψc]}, the expectation of the conditional

variance of µ2(Φc, g) given Ψc; and
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• Level 3: σ2
4

△

= V ar[µ3(Ψc)] = E{[µ3(Ψc)− µ4]
2}, the variance of µ3(Ψc).

Note that by the law of total variance, we have

V ar[µ2(Φc, g)] = E{V ar[µ2(Φc, g)|Ψc]}+ V ar{E[µ2(Φc, g)|Ψc]}

= σ2
3 + V ar[µ3(Ψc)] = σ2

3 + σ2
4,

and

V ar[µ1(Θc, g, x)] = E{V ar[µ1(Θc, g, x)|Φc, g]}+ V ar{E[µ1(Θc, g, x)|Φc, g]}

= σ2
2 + V ar[µ2(Φc, g)] = σ2

2 + σ2
3 + σ2

4 .

It is obvious that the tree structure of the hierarchical credibility model covers that of the
Bühlmann-Straub credibility model, which can be obtained by applying a three-level tree
structure with only levels zero, one and two in Figure 1 for a single population of country
c and gender g. Therefore, the five-level hierarchical credibility model is a generalization
of the Bühlmann-Straub credibility model. Given a population of country c and gender
g, if further wc, g, x, t = 1 for x = 1, · · · , X and t = 1, · · · , T , then the Bühlmann-Straub
credibility model reduces to the Bühlmann credibility model.

2.2 Parameter estimations

Based on Section 6.4 of Bühlmann and Gisler (2005), the compressed data B and credi-
bility factors α are calculated from the bottom level to the top level by minimizing the
associated projection functions from the top to the bottom.

Credibility estimators

To find the credibility estimator Ŷc, g, x, T+1 for age x and gender g and country c

in year T + 1, we need to first find the credibility estimators Ŷc, g, x and Ŷc, g. All the
credibility estimators can be seen as linear combinations of the overall mean µ̂4 and the
compressed data B as follows: Ŷc, g = α

(3)
c · B

(3)
c + (1− α

(3)
c ) · µ̂4,

Ŷc, g, x = α(2)
c, g ·B

(2)
c, g + (1− α(2)

c, g) · Ŷc, g

= α(2)
c, g ·B

(2)
c, g + [(1− α(2)

c, g) · α
(3)
c ] ·B(3)

c + [(1− α(2)
c, g) · (1− α(3)

c )] · µ̂4,

and

Ŷc, g, x, T+1

= α(1)
c, g, x ·B

(1)
c, g, x + (1− α(1)

c, g, x) · Ŷc, g, x

= α(1)
c, g, x ·B

(1)
c, g, x + [(1− α(1)

c, g, x) · α
(2)
c, g] · B

(2)
c, g + [(1− α(1)

c, g, x) · (1− α(2)
c, g)] · Ŷc, g

= α(1)
c, g, x ·B

(1)
c, g, x + [(1− α(1)

c, g, x) · α
(2)
c, g] · B

(2)
c, g + [(1− α(1)

c, g, x) · (1− α(2)
c, g) · α

(3)
c ] · B(3)

c

+[(1− α(1)
c, g, x) · (1− α(2)

c, g) · (1− α(3)
c )] · µ̂4, (2.1)

where B
(1)
c, g, x, B

(2)
c, g, and B

(3)
c represent compressed data; α

(1)
c, g, x, α

(2)
c, g and α

(3)
c are the

corresponding credibility factors for levels one, two and three, respectively. The expres-
sions for the compressed data (B

(1)
c, g, x, B

(2)
c, g and B

(3)
c ), the credibility factors (α

(1)
c, g, x, α

(2)
c, g
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Table 1: Hierarchical credibility estimation of σ2
1, σ

2
2, σ

2
3 and σ2

4

Panel A: Formulas for B
(1)
c, g, x, B

(2)
c, g, B

(3)
c , α

(1)
c, g, x, α

(2)
c, g, α

(3)
c and µ̂4

B
(1)
c, g, x =

T
∑

t=1

wc, g, x, t

w
(1)
c, g, x

· Yc, g, x, t, w
(1)
c, g, x =

T
∑

t=1

wc, g, x, t, α
(1)
c, g, x =

w
(1)
c, g, x · σ2

2

w
(1)
c, g, x · σ2

2 + σ2
1

B
(2)
c, g =

X
∑

x=1

α
(1)
c, g, x

w
(2)
c, g

· B(1)
c, g, x, w

(2)
c, g =

X
∑

x=1

α(1)
c, g, x, α

(2)
c, g =

w
(2)
c, g · σ2

3

w
(2)
c, g · σ2

3 + σ2
2

B
(3)
c =

G
∑

g=1

α
(2)
c, g

w
(3)
c

·B(2)
c, g, w

(3)
c =

G
∑

g=1

α(2)
c, g, α

(3)
c =

w
(3)
c · σ2

4

w
(3)
c · σ2

4 + σ2
3

µ̂4 =
C
∑

c=1

α
(3)
c

w(4)
· B(3)

c , w(4) =
C
∑

c=1

α(3)
c .

Panel B: Hierarchical credibility estimation of σ2
1 , σ

2
2 , σ

2
3 and σ2

4

σ2
1 = E[σ2

1(Θc, g, x)] σ2
1(Θc, g, x) = wc, g, x, t · V ar[Yc, g, x, t|Θc, g, x]

σ̂2
1 =

1

C ·G ·X

C
∑

c=1

G
∑

g=1

X
∑

x=1

σ̂2
1(Θc, g, x) σ̂2

1(Θc, g, x)
△
=

1

T − 1

T
∑

t=1

wc, g, x, t · [Yc, g, x, t −B(1)
c, g, x]

2

σ2
2 = E{V ar[µ1(Θc, g, x)|Φc, g]} z

(1)
c, g =

X
∑

x=1

w(1)
c, g, x, B

(1)

c, g, • =
X
∑

x=1

w
(1)
c, g, x

z
(1)
c, g

· B(1)
c, g, x,

c
(1)
c, g =

X − 1

X
·

{ X
∑

x=1

w
(1)
c, g, x

z
(1)
c, g

·

[

1−
w

(1)
c, g, x

z
(1)
c, g

]}−1

σ̂2
2 =

1

C ·G

C
∑

c=1

G
∑

g=1

max[T̂ (1)
c, g , 0] T̂

(1)
c, g = c

(1)
c, g ·

{

X

X − 1

X
∑

x=1

w
(1)
c, g, x

z
(1)
c, g

[

B(1)
c, g, x −B

(1)

c, g, •

]2

−
X

z
(1)
c, g

· σ̂2
1

}

σ2
3 = E{V ar[µ2(Φc, g)|Ψc]} z

(2)
c =

G
∑

g=1

w(2)
c, g, B

(2)

c, • =
G
∑

g=1

w
(2)
c, g

z
(2)
c

· B(2)
c, g,

c
(2)
c =

G− 1

G
·

{ G
∑

g=1

w
(2)
c, g

z
(2)
c

·

[

1−
w

(2)
c, g

z
(2)
c

]}−1

σ̂2
3 =

1

C

C
∑

c=1

max[T̂ (2)
c , 0] T̂

(2)
c = c

(2)
c ·

{

G

G− 1

G
∑

g=1

w
(2)
c, g

z
(2)
c

[

B(2)
c, g −B

(2)

c, •

]2

−
G

z
(2)
c

· σ̂2
2

}

σ2
4 = V ar[µ3(Ψc)] z(3) =

C
∑

c=1

w(3)
c , B

(3)

•
=

C
∑

c=1

w
(3)
c

z(3)
· B(3)

c ,

c(3) =
C − 1

C
·

{ C
∑

c=1

w
(3)
c

z(3)
·

[

1−
w

(3)
c

z(3)

]}−1

σ̂2
4 = max[T̂ (3), 0] T̂ (3) = c(3) ·

{

C

C − 1

C
∑

c=1

w
(3)
c

z(3)

[

B(3)
c −B

(3)

•

]2

−
C

z(3)
· σ̂2

3

}
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and α
(3)
c ), and µ̂4 by theorem 6.4 of Bühlmann and Gisler (2005) are given in Panel A of

Table 1.

Estimation of the structural parameters

Note that for a four-level tree structure, we can set α
(3)
c = 1 and do not need to

calculate µ̂4 and w(4) in Panel A of Table 1. Similarly, to obtain the corresponding
formula (2.1) for a three-level tree structure which is the Bühlmann-Straub credibility

model, we let α
(3)
c = α

(2)
c, g = 1 and it is not necessary to calculate B

(3)
c , w

(3)
c , µ̂4 and w(4).

To get the credibility estimate Ŷc, g, x, T+1 in (2.1), we need the estimates σ̂2
1, σ̂

2
2 , σ̂

2
3

and σ̂2
4. The estimation of σ2

1, σ
2
2, σ

2
3 and σ2

4 is given in Panel B of Table 1. For the
detailed estimation, please refer to Section 6.6 of Bühlmann and Gisler (2005). From
the formulas in Table 1, we notice that the values of σ̂2

2, σ̂
2
3 and σ̂2

4 can be zero, which

leads to the values of α̂
(1)
c, g, x, α̂

(2)
c, g and α̂

(3)
c being zero, respectively. Since the structural

parameters are estimated from the bottom to the top of the tree structure, it is easy to
extend them to a tree structure with higher levels. However, a hierarchical tree structure
with higher levels has more structural parameters. As suggested by Bühlmann and Gisler
(2005), one should be careful choosing the number of levels in the hierarchical credibility
model.

Next, we will give a special case where all of the known exposure units wc, g, x, ts are
set to 1. We will use this special case for our hierarchical credibility mortality model.

A special case

If wc, g, x, t = 1 for all c = 1, · · · , C, g = 1, · · · , G, x = 1, · · · , X , and t = 1, · · · , T , then
the quantities in Panel A of Table 1 simplify to

w(1)
c, g, x = T

△

= w(1), B(1)
c, g, x =

1

T

T
∑

t=1

Yc, g, x, t
△

= Y c, g, x, •,

α̂(1)
c, g, x =

T · σ̂2
2

T · σ̂2
2 + σ̂2

1

△

= α̂(1); (2.2)

w(2)
c, g = X · α̂(1), B(2)

c, g =
1

X

X
∑

x=1

B(1)
c, g, x =

1

X · T

X
∑

x=1

T
∑

t=1

Yc, g, x, t
△
= Y c, g, •, •,

α̂(2)
c, g =

X · α̂(1) · σ̂2
3

X · α̂(1) · σ̂2
3 + σ̂2

2

△

= α̂(2); (2.3)

w(3)
c = G · α̂(2), B(3)

c =
1

G

G
∑

g=1

B(2)
c, g =

1

G ·X · T

G
∑

g=1

X
∑

x=1

T
∑

t=1

Yc, g, x, t
△

= Y c, •, •, •,

α̂(3)
c =

G · α̂(2) · σ̂2
4

G · α̂(2) · σ̂2
4 + σ̂2

3

△

= α̂(3), (2.4)

w(4) = C · α̂(3), µ̂4 =
1

C

C
∑

c=1

B(3)
c =

1

C ·G ·X · T

C
∑

c=1

G
∑

g=1

X
∑

x=1

T
∑

t=1

Yc, g, x, t
△
= Y •, •, •, •.

Also, the quantities simplify to, for estimation of
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• σ2
1: B

(1)
c, g, x = Y c, g, x, •, and

σ̂2
1(Θc, g, x) =

1

T − 1

T
∑

t=1

(Yc, g, x, t − Y c, g, x, •)
2;

• σ2
2: w

(1)
c, g, x = T , z

(1)
c, g = X · T , B

(1)

c, g, • = Y c, g, •, •, c
(1)
c, g = 1, and

T̂ (1)
c, g =

1

X − 1

X
∑

x=1

(Y c, g, x, • − Y c, g, •, •)
2 −

σ̂2
1

T
;

• σ2
3: w

(2)
c, g = X ·α(1), z

(2)
c = G ·X ·α(1), B

(2)
c, g = Y c, g, •, •, B

(2)

c, • = Y c, •, •, •, c
(2)
c = 1, and

T̂ (2)
c =

1

G− 1

G
∑

g=1

(Y c, g, •, • − Y c, •, •, •)
2 −

[

σ̂2
2

X
+

σ̂2
1

X · T

]

;

• σ2
4: w

(3)
c = G ·α(2), z(3) = C ·G ·α(2), B

(3)
c = Y c, •, •, •, B

(3)

•
= Y •, •, •, •, c

(3) = 1, and

T̂ (3) =
1

C − 1

C
∑

c=1

(Y c, •, •, • − Y •, •, •, •)
2 −

[

σ̂2
3

G
+

σ̂2
2

G ·X
+

σ̂2
1

G ·X · T

]

.

The hierarchical credibility estimate of the decrement in the logarithm of central
death rate for country c, gender g and age x over [T, T + 1] in (2.1) for this special case
becomes

Ŷc, g, x, T+1

= α̂(1) · Y c, g, x, • + [(1− α̂(1)) · α̂(2)] · Y c, g, •, • + [(1− α̂(1)) · (1− α̂(2)) · α̂(3)] · Y c, •, •, •

+[(1− α̂(1)) · (1− α̂(2)) · (1− α̂(3))] · Y •, •, •, •. (2.5)

Note that Ŷc, g, x, T+1 is the credibility-factor-weighted average of

• Y c, g, x, • = 1
T

∑T

t=1 Yc, g, x, t = 1
T

∑T

t=1[ln(mc, g, xL+x−1, tL+t) − ln(mc, g, xL+x−1, tL+t−1)]
(the average annual decrement of {ln(mc, g, x, tL+t) : t = 0, · · · , T}, the individual

time trend over [0, T ] for an individual of age x and gender g in country c);

• Y c, g, •, • = 1
T

∑T

t=1 Y c, g, •, t = 1
T

∑T

t=1[ln(mc, g, •, tL+t) − ln(mc, g, •, tL+t−1)] (the av-

erage annual decrement of {ln(mc, g, •, tL+t) = 1
X

∑X

x=1 ln(mc, g, xL+x−1, tL+t) : t =
0, · · · , T}, the population time trend over [0, T ] for a population of gender g and
country c);

• Y c, •, •, • =
1
T

∑T

t=1 Y c, •, •, t =
1
T

∑T

t=1[ln(mc, •, •, tL+t)− ln(mc, •, •, tL+t−1)] (the average

annual decrement of {ln(mc, •, •, tL+t) =
1
G

∑G

g=1 ln(mc, g, •, tL+t) : t = 0, · · · , T}, the
country time trend over [0, T ] for country c); and

• Y •, •, •, • =
1
T

∑T

t=1 Y •, •, •, t =
1
T

∑T

t=1[ln(m•, •, •, tL+t)−ln(m•, •, •, tL+t−1)] (the average

annual decrement of {ln(m•, •, •, tL+t) =
1
C

∑C

c=1 ln(mc, •, •, tL+t) : t = 0, · · · , T}, the
multi-country time trend over [0, T ] for all C countries).
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We use (g, x, t) for gender g and age x in year t for a four-level hierarchical structure
being applied to a country. The structural parameters for a four-level hierarchical tree
can also be estimated from those for the five-level hierarchical tree by setting C = 1 and
α̂(3) = 1, and we do not need to calculate T̂ (3) and σ̂2

4. Then the hierarchical credibility
estimate of the decrement in the logarithm of central death rate for gender g and age x
over [T, T + 1] under the special case is

Ŷg, x, T+1 = α̂(1) · Y g, x, • + [(1− α̂(1)) · α̂(2)] · Y g, •, • + [(1− α̂(1)) · (1− α̂(2))] · Y •, •, •, (2.6)

where Y g, x, • =
1
T

∑T

t=1 Y g, x, t, Y g, •, • =
1
X

∑X

x=1 Y g, x, • =
1

X·T

∑X

x=1

∑T

t=1 Yg, x, t, and

Y •, •, • =
1

G

G
∑

g=1

Y g, •, • =
1

G ·X · T

G
∑

g=1

X
∑

x=1

T
∑

t=1

Yg, x, t.

Note that the expressions for α(1) and α(2) in (2.6) are the same as (2.2) and (2.3),
respectively, and σ̂2

1 , σ̂
2
2 and σ̂2

3 in α(1) and α(2) become

σ̂2
1 =

1

G ·X

G
∑

g=1

X
∑

x=1

[

1

T − 1

T
∑

t=1

(Yg, x, t − Y g, x, •)
2

]

,

σ̂2
2 = 1

G

∑G

g=1max[T̂
(1)
g , 0] and σ̂2

3 = max[T̂ (2), 0], where

T̂ (1)
g =

1

X − 1

X
∑

x=1

(Y g, x, • − Y g, •, •)
2 −

σ̂2
1

T
,

and

T̂ (2) =
1

G− 1

G
∑

g=1

(Y g, •, • − Y •, •, •)
2 −

[

σ̂2
2

X
+

σ̂2
1

X · T

]

.

Similarly, the structural parameters for a three-level hierarchical tree can be estimated
by setting C = G = 1 and α(3) = α(2) = 1. Then, we do not need to calculate σ̂2

3 and
σ̂2
4. Therefore, the three-level hierarchical credibility mortality model is exactly the non-

parametric Bühlmann credibility mortality model proposed by Tsai and Lin (2017b).

The expression in (2.5) gives the hierarchical credibility estimate Ŷc, g, x, T+1 for country
c, gender g and age x in year T + 1. To obtain the hierarchical credibility estimate
Ŷc, g, x, T+τ for year T + τ (τ ≥ 2), which is denoted by

Ŷc, g, x, T+τ = α̂(1)
τ · Y

T+τ

c, g, x, • + [(1− α̂(1)
τ ) · α̂(2)

τ ] · Y
T+τ

c, g, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · α̂(3)
τ ] · Y

T+τ

c, •, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · (1− α̂(3)
τ )] · Y

T+τ

•, •, •, •, (2.7)

we adopt the same two strategies, the expanding window (EW) strategy and the moving
window (MW) strategy, as those in the Bühlmann credibility mortality model of Tsai
and Lin (2017b).

Strategy EW: Expanding window by one year
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Figure 4: Expanding Window (EW) and Moving Window (MW)

(a) Expanding Window (EW) (b) Moving Window (MW)

The EW strategy expands the original fitting year span by τ−1 years to [1, T +τ−1]
from [1, T ] by appending {Ŷc, g, x, T+1, · · · , Ŷc, g, x, T+τ−1} to the end of {Yc, g, x, 1, · · · , Yc, g, x, T}
for all c, g and x. See Figure 4 (a).

First, the average annual decrement over the year span [1, T + τ − 1] for country c,

gender g and age x, Y
T+τ

c, g, x, •, τ ≥ 2, is calculated by

Y
T+τ

c, g, x, • =
1

T + τ − 1

[ T
∑

t=1

Yc, g, x, t +

T+τ−1
∑

t=T+1

Ŷc, g, x, t

]

. (2.8)

The quantities Y
T+τ

c, g, •, •, Y
T+τ

c, •, •, •, and Y
T+τ

•, •, •, • are obtained, using the same formula as
τ = 1, by

Y
T+τ

c, g, •, • =
1

X

X
∑

x=1

Y
T+τ

c, g, x, •, (2.9)

Y
T+τ

c, •, •, • =
1

G

G
∑

g=1

Y
T+τ

c, g, •, •, (2.10)

and

Y
T+τ

•, •, •, • =
1

C

C
∑

c=1

Y
T+τ

c, •, •, •. (2.11)

Next, α̂
(1)
τ , the credibility factor assigned to Y

T+2

c, g, x, •, is calculated as

α̂(1)
τ =

(T + τ − 1) · σ̂2
2

(T + τ − 1) · σ̂2
2 + σ̂2

1

. (2.12)

The formulas for the credibility factors α̂
(2)
τ and α̂

(3)
τ are the same as those for τ = 1

given in (2.3) and (2.4), which are

α̂(2)
τ =

X · α̂
(1)
τ · σ̂2

3

X · α̂
(1)
τ · σ̂2

3 + σ̂2
2

=
X (T + τ − 1) · σ̂2

3

X (T + τ − 1) · σ̂2
3 + (T + τ − 1) · σ̂2

2 + σ̂2
1

, (2.13)

and
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α̂(3)
τ =

G · α̂
(2)
τ · σ̂2

4

G · α̂
(2)
τ · σ̂2

4 + σ̂2
3

=
GX (T + τ − 1) · σ̂2

4

GX (T + τ − 1) · σ̂2
4 +X (T + τ − 1) · σ̂2

3 + (T + τ − 1) · σ̂2
2 + σ̂2

1

. (2.14)

Also note that the values of σ̂2
1, σ̂

2
2, σ̂

2
3, σ̂

2
4 are unchanged as τ increases.

Finally, the hierarchical credibility estimate Ŷc, g, x, T+τ for country c, gender g and age
x in year T + τ is obtained by (2.7).

Strategy MW: Moving window by one year

The MW strategy moves the original fitting year span by τ − 1 years to [τ, T + τ − 1]
from [1, T ] by adding the hierarchical credibility estimates {Ŷc, g, x, T+1, . . . , Ŷc, g, x, T+τ−1}

to and removing {Ŷc, g, x, 1, · · · , Ŷc, g, x, τ−1} from {Yc, g, x, 1, · · · , Yc, g, x, T} for all c, g and x

where Ŷc, g, x, t = Yc, g, x, t for t ≤ T . See Figure 4 (b).

First, we obtain the average annual decrement over the year span [τ, T + τ − 1] for

country c, gender g and age x, Y
T+τ

c, g, x, •, by

Y
T+τ

c, g, x, • =
1

T

T+τ−1
∑

t=τ

Ŷc, g, x, t, (2.15)

and Y
T+τ

c, g, •, •, Y
T+τ

c,•, •, •, and Y
T+τ

•, •, •, • are calculated using (2.9), (2.10) and (2.11), respec-
tively.

Next, the credibility factor assigned to Y
T+τ

c, g, x, • is achieved by α̂
(1)
τ =

T · σ̂2
2

T · σ̂2
2 + σ̂2

1

. As

σ̂2
1, σ̂

2
2 , σ̂

2
3, σ̂

2
4 are unchanged for all τ , we have α̂

(1)
τ = α̂

(1)
1 , α̂

(2)
τ = α̂

(2)
1 and α̂

(3)
τ = α̂

(3)
1 .

Therefore, α̂
(1)
τ , α̂

(2)
τ and α̂

(3)
τ are constant in τ under the MW strategy.

Finally, we can calculate Ŷc, g, x, T+τ , the decrement of the logarithm of central death
rate for country c, gender g and age x over [T + τ − 1, T + τ ], using (2.7).

There are some properties for the EW and MW strategies, which are stated in the
following three propositions. The proofs are given in Appendix B.

Proposition 1 Under the EW and MW strategies, the average of the hierarchical credi-

bility estimates Ŷc, g, x, T+τs over ages 1, · · · , X, genders 1, · · · , G, and countries 1, · · · , C

for year T + τ equals the average of Y
T+τ

c, g, x, • over the same age, gender and country spans

for year T + τ . Specifically,

1

C ·G ·X

C
∑

c=1

G
∑

g=1

X
∑

x=1

Ŷc, g, x, T+τ =
1

C ·G ·X

C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+τ

c, g, x, • = Y
T+τ

•, •, •, •, τ = 1, 2, · · · .

Proposition 2 Under the EW strategy, the overall average of the hierarchical credibility

estimates for year T + τ , Y
T+τ

•, •, •, •, τ = 1, 2, · · · , are constant in τ , i.e.,

Y
T+τ

•, •, •, • = Y
T+1

•, •, •, •, τ = 2, 3, · · · .
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Proposition 3 Under the EW strategy, the hierarchical credibility estimate Ŷc, g, c, T+τ is

constant for τ = 1, 2, · · · ; that is, Ŷc, g, x, T+τ = Ŷc, g, x, T+1, τ = 2, 3, · · · .

From Proposition 3, we have

ln(m̂c, g, x, tU+τ ) = ln(mc, g, x, tU ) +

τ
∑

t=1

Ŷc, g, x, T+t = ln(mc, g, x, tU ) + (Ŷc, g, x, T+1) · τ.

Thus, ln(m̂c, g, x, tU+τ ) is a linear function of τ with intercept ln(mc, g, x, tU ) and slope

Ŷc, g, x, T+1.

3. Numerical illustrations

This section applies the hierarchical models of three/four/five-level and the estimated
structural parameters introduced in Section 2 to forecasting mortality rates for six pop-
ulations (both genders of the US, the UK and Japan) for numerical illustrations. The
mortality data are obtained from the Human Mortality Database (HMD). We fit five-
level, four-level, and three-level hierarchical credibility models with a wide age span and a
series of fitting year spans, and make out-of-sample forecasts for future consecutive years.
The same data set is also fitted to the classical Lee-Carter model, joint-k, cointegrated
and augmented common factor Lee-Carter models with six populations and two popula-
tions of each of three countries, respectively. The forecasting performance is measured
by the average of mean absolute percentage error (AMAPE), which shows that all of
the three-level, four-level and five-level hierarchical credibility mortality models overall
outperform the classical and three multi-population Lee-Carter models.

For each of the three-level, four-level, and five-level hierarchical credibility models, the
EW and MW strategies are adopted to forecast mortality rates for three forecasting year
spans. We denote EW-l and MW-l for the EW and MW strategies, respectively, under
the l-level hierarchical credibility model where l = 3, 4, 5. The three-level hierarchical
credibility model with a tree structure of year, age and population (male or female of
a country) is applied to each of the six populations. Under the four-level (five-level)
hierarchical credibility model, the tree structure from the bottom to the top is specified
as year, age, gender and country (year, age, gender, country and multi-country), and is
applied to two genders of each of three countries (all six populations). To compare the
forecasting performance of the three-level hierarchical credibility model, the mortality
data for each of the six populations are respectively fitted to the classical Lee-Carter
model, which is denoted as LC1-Ind; and to compare the forecasting performance of the
four-level (five-level) hierarchical credibility model, the mortality data for both genders
of each of three countries (six populations) are respectively fitted to the joint-k, the
cointegrated and the augmented common factor Lee-Carter models with the male of a
country (the US male) as the base population for the cointegrated Lee-Carter model,
which are denoted by LC2-JoK, LC2-CoI and LC2-ACF (LC6-JoK, LC6-CoI and LC6-
ACF).

Let [T1, T2] be the study period where mortality rates are available. Assume that
we stand at the end of year tU and would like to fit the models with mortality data
in the rectangle [xL, xU ] × [tL, tU ], project mortality rates for years [tU + 1, T2], and
evaluate the forecast performances of the underlying mortality models. Below are detailed
assumptions.
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Table 2: Summary of the fitting and forecasting year spans

Fitting year spans [tL, tU ]

[1951, 2003] [1951, 1993] [1951, 1983]
[1952, 2003] [1952, 1993] [1952, 1983]

...
...

...
[1999, 2003] [1989, 1993] [1979, 1983]

Ending year of fitting year spans tU 2003 1993 1983
Number of fitting year spans J 49 39 29

Forecasting year spans [tU + 1, T2] [2004, 2013] [1994, 2013] [1984, 2013]
Width of forecasting year spans T2 − tU 10 20 30

• For the age span [xL, xU ], we choose xL = 20 and xU = 84, and the length of the
age span m = 65.

• For the study period [T1, T2], we use a 63-year period 1951–2013, i.e., T1 = 1951
and T2 = 2013 which is the most recent year where the mortality rates are available
for both genders of the US, the UK, and Japan.

• For the fitting year spans [tL, tU ], a series of periods, [1951, tU ], · · · , [tU − 4, tU ],
are selected where tU takes three values of 1983, 1993 and 2003, and the shortest
period is five years.

• For the forecasting year span [tU + 1, T2], we choose [2004, 2013] (10 years wide),
[1994, 2013] (20 years wide) and [1984, 2013] (30 years wide).

Table 2 gives a summary of the fitting and forecasting year spans.
We compare the forecasting performances of the hierarchical credibility models with

the classical, joint-k, cointegrated and augmented common factor Lee-Carter models by
the measure of mean absolute percentage error (MAPE), which is a common measurement
as used in Lin et al. (2015) and Tsai and Lin (2017a, b). The MAPE is calculated by
dividing the absolute value of the difference between the forecast mortality rate q̂c, g, x, tU+τ

and the true mortality rate qc, g, x, tU+τ by the true mortality rate qc, g, x, tU+τ,. Specifically,

the MAPE
[tL, tU ]
c, g, x, tU+τ for age x, gender g and country c in the forecasting year tU + τ

based on the fitting year span [tL, tU ] is defined by

MAPE
[tL, tU ]
c, g, x, tU+τ =

∣

∣

∣

∣

q̂c, g, x, tU+τ − qc, g, x, tU+τ

qc, g, x, tU+τ

∣

∣

∣

∣

, (3.1)

where q̂c, g, x, tU+τ = 1 − e−m̂c, g, x, tU+τ is based on the assumption of constant force of

mortality over [x, x+1]× [tU+τ, tU+τ+1]. The MAPE
[tL, tU ]
c, g, x, tU+τ above is calculated for

a single forecast. Here we introduce the AMAPE
[tL, tU ]
c, g, [tU+1, T2]

to evaluate the forecasting

performance for mortality rates in the window [xL, xU ]× [tU + 1, T2], which is obtained

by averaging the MAPE
[tL, tU ]
c, g, x, tU+τ over the window as

AMAPE
[tL, tU ]
c, g, [tU+1, T2]

=
1

T2 − tU
·
1

m

T2−tU
∑

τ=1

xU
∑

x=xL

MAPE
[tL, tU ]
c, g, x, tU+τ .
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The value of AMAPE
[tL, tU ]
c, g, [tU+1, T2]

largely depends on the fitting year span [tL, tU ]; there-
fore, we evaluate the overall forecasting performance of a mortality model by averaging
the AMAPE

[tL, tU ]
c, g, [tU+1, T2]

over the fitting year spans [tL, tU ] for tL = T1, T1+1, . . . , tU − 4
to get the AAMAPEc, g, [tU+1, T2], which is computed as

AAMAPEc, g, [tU+1, T2] =
1

tU − 4− T1 + 1

tU−4
∑

tL=T1

AMAPE
[tL, tU ]
c, g, [tU+1, T2]

.

A smaller AAMAPEc, g, [tU+1, T2] produced from a mortality model indicates an overall
more accurate forecast for the period [tU + 1, T2]. The underlying mortality models in
this paper will be ranked based on the AAMAPEc, g, [tU+1, T2].

We produce seven figures and construct three tables for three forecasting year spans
[2004, 2013], [1994, 2013] and [1984, 2013]. Figures 5–10 show the AMAPE

[tL, tU ]
c, g, [tU+1, 2013]

against tL where tU = 2003, 1993, 1983 for each of six populations (US male, US female,
UK male, UK female, Japan male and Japan female), respectively, and Figure 11 exhibits

the average of the AMAPE
[tL, tU ]
c, g, [tU+1, 2013] over the six populations against tL where tU =

2003, 1993, 1983. Within each figure, the AMAPE
[tL, tU ]
c, g, [tU+1, 2013] plots for three different

forecasting year spans are shown in three rows, and those for single population, two
populations, and six populations to which the models are respectively fitted are given in
three columns. Specifically, the first column displays the AMAPE

[tL, tU ]
c, g, [tU+1, 2013] against

tL, the start year of the fitting year span, for the classical Lee-Carter and the three-
level hierarchical credibility models; the second column exhibits the AMAPE

[tL, tU ]
c, g, [tU+1, 2013]

against tL for the four-level hierarchical credibility model and the three Lee-Carter models
for two populations; and the third column presents the AMAPE

[tL, tU ]
c, g, [tU+1, 2013] against tL

for the five-level hierarchical credibility model and the three Lee-Carter models for six
populations. Note that the AMAPE

[tL, tU ]
c, g, [tU+1, 2013] under the three Lee-Carter models

for two populations and six populations are different. For the two-population graphs,
the joint-k, cointegrated and augmented common factor Lee-Carter models are fitted
into both genders of a country; for example, the three Lee-Carter models are applied to
both genders of the US, and the corresponding AMAPE

[tL, tU ]
c, g, [tU+1, 2013] are given in (b),

(e) and (h) of Figures 5 and 6, respectively. For the six-population graphs, the joint-k,
cointegrated and augmented common factor Lee-Carter models are fitted to all of six
populations, and the corresponding AMAPE

[tL, tU ]
c, g, [tU+1, 2013] for the US male and female

are given in (c), (f) and (i) of Figures 5 and 6, respectively.

Observations from the figures are summarized below.

• The AMAPE
[tL, tU ]
c, g, [tU+1, T2]

values for the hierarchical credibility models and Lee-
Carter models are generally decreasing in tU , which means the wider the forecasting
period, the higher the AMAPE

[tL, tU ]
c, g, [tU+1, T2]

value.

• The AMAPE
[tL, tU ]
c, g, [tU+1, T2]

values for all models and two strategies are neither mono-

tonically decreasing nor increasing with tL (the start year of the fitting year span),

i.e., the AMAPE
[tL, tU ]
c, g, [tU+1, T2]

values depend on the length and location of the fitting

year span. The pattern of AMAPE
[tL, tU ]
c, g, [tU+1, T2]

curves largely depends on the data

set. For example, the AMAPE
[tL, tU ]
c, g, [tU+1, T2]

curve for the MW strategy in Figure 6
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Table 3: AAMAPEc, g, [2004,2013]s (%)

AAMAPE Country US UK Japan
Model Avg 6 M F Avg 2 M F Avg 2 M F Avg 2

Hierarchical Credibility (HC) model
EW-5 6.63 5.58 4.92 5.25 9.48 7.87 8.68 5.74 6.20 5.97
MW-5 6.66 5.60 4.93 5.26 9.57 7.95 8.76 5.77 6.16 5.97
EW-4 7.23 6.36 5.53 5.95 9.86 8.24 9.05 5.86 7.52 6.69
MW-4 7.16 6.41 5.56 5.99 9.79 8.17 8.98 5.76 7.27 6.52
EW-3 7.47 6.00 6.04 6.02 9.78 8.33 9.06 5.83 8.85 7.34
MW-3 7.41 5.96 6.14 6.05 9.61 8.36 8.98 5.85 8.54 7.19

Lee-Carter model applied to six populations (LC6)
LC6-JoK 10.61 10.27 8.54 9.40 15.10 10.23 12.66 7.98 11.56 9.77
LC6-CoI 9.69 9.23 8.57 8.90 12.64 9.79 11.22 7.93 9.95 8.94
LC6-ACF 9.22 7.46 8.45 7.96 13.94 8.24 11.09 6.26 10.96 8.61

Lee-Carter model applied to both genders of a country (LC2)
LC2-JoK 9.77 10.06 8.75 9.41 12.95 8.89 10.92 7.61 10.39 9.00
LC2-CoI 9.59 9.23 8.57 8.90 12.28 9.32 10.80 7.63 10.50 9.06
LC2-ACF 9.60 9.58 8.25 8.92 12.16 9.26 10.71 7.57 10.77 9.17

Lee-Carter model applied to single population (LC1)
LC1-Ind 9.64 9.23 8.57 8.90 12.28 9.36 10.82 7.63 10.77 9.20

(h) increases for the first 20 tL values, then decreases for the next five tL values,
and finally increases in the last few tL values. However, Figure 7 (h) shows the

AMAPE
[tL, tU ]
c, g, [tU+1, T2]

curve for the MW strategy is decreasing in tL except for a few
tL values at both ends of the domain. Since we do not know which fitting year span
will result in the lowest AMAPE

[tL, tU ]
c, g, [tU+1, T2]

, we calculate the AAMAPEc, g, [tU+1, T2]

(the average of the AMAPE
[tL, tU ]
c, g, [tU+1, T2]

over all values of tL) and use it to rank the
underlying mortality models.

• The AMAPE
[tL, tU ]
c, g, [tU+1, T2]

values for the EW and MW strategies of the hierarchical
credibility models are overall lower than those for the Lee-Carter models except for
a few cases, for example, Figure 5 (i) for the US male, Figure 6 (i) for the US fe-
male, and Figure 9 (h) for the Japan male; the corresponding AAMAPEc, g, [tU+1, T2]

values are shown in Table 5. Moreover, the AMAPE
[tL, tU ]
c, g, [tU+1, T2]

curves for the MW
strategy look smoother in tL than the EW one.

Below are observations from Tables 3–5, which exhibit the AAMAPEc, g, [tU+1, 2013],
the “Avg 2” (the average of the AAMAPEc, g, [tU+1, 2013] over both genders of a country)
and the “Avg 6” (the average of the AAMAPEc, g, [tU+1, 2013] over six populations) for
tU = 2003, 1993 and 1983, respectively.

• Observing the values in Tables 3–5, it is obvious that the AAMAPEc, g, [tU+1, 2013]

values become larger as the length of the forecasting year span increases from 10
to 30 years, which is consistent with the observations in Figures 5–10 that the
AMAPE

[tL, tU ]
c, g, [tU+1, T2]

values increase in the width of the forecasting year span.

• Based on the average of the AAMAPEc, g, [tU+1, 2013] over six populations (“Avg
6”), we observe that the hierarchical credibility model with more levels provides
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Table 4: AAMAPEc, g, [1994, 2013]s (%)

AAMAPE Country US UK Japan
Model Avg 6 M F Avg 2 M F Avg 2 M F Avg 2

Hierarchical Credibility (HC) model
EW-5 10.41 10.12 7.56 8.84 14.00 9.05 11.53 8.52 13.18 10.85
MW-5 10.55 10.41 7.13 8.77 14.39 9.45 11.92 8.66 13.24 10.95
EW-4 11.85 13.77 6.05 9.91 14.94 10.03 12.48 12.19 14.10 13.15
MW-4 11.74 14.39 6.12 10.26 15.07 10.14 12.61 11.17 13.56 12.37
EW-3 11.98 14.97 6.14 10.55 15.57 9.50 12.53 10.05 15.63 12.84
MW-3 11.81 15.04 6.32 10.68 15.48 9.79 12.63 9.49 14.75 12.12

Lee-Carter model applied to six populations (LC6)
LC6-JoK 14.71 16.64 9.59 13.11 19.11 13.63 16.37 12.93 16.37 14.65
LC6-CoI 13.98 16.48 8.32 12.40 18.71 13.81 16.26 11.31 15.27 13.29
LC6-ACF 14.25 18.19 8.95 13.57 18.92 10.75 14.83 11.30 17.39 14.34

Lee-Carter model applied to both genders of a country (LC2)
LC2-JoK 14.31 16.75 8.55 12.65 17.64 13.05 15.34 13.19 16.71 14.95
LC2-CoI 14.14 16.48 8.32 12.40 17.43 13.12 15.28 12.74 16.73 14.73
LC2-ACF 14.02 16.36 7.61 11.98 17.34 13.01 15.17 12.68 17.14 14.91

Lee-Carter model applied to single population (LC1)
LC1-Ind 14.23 16.48 8.50 12.49 17.43 13.07 15.25 12.74 17.14 14.94

Table 5: AAMAPEc, g, [1984, 2013]s (%)

AAMAPE Country US UK Japan
Model Avg 6 M F Avg 2 M F Avg 2 M F Avg 2

Hierarchical Credibility (HC) model
EW-5 14.01 13.57 17.33 15.45 16.94 10.63 13.78 10.69 14.90 12.79
MW-5 14.02 13.48 18.26 15.87 16.44 10.60 13.52 10.85 14.50 12.67
EW-4 14.60 11.45 13.42 12.44 18.00 10.03 14.01 17.63 17.09 17.36
MW-4 14.28 11.63 15.38 13.50 17.03 9.53 13.28 16.12 15.98 16.05
EW-3 15.03 11.71 15.41 13.56 19.26 9.56 14.41 13.88 20.39 17.13
MW-3 14.55 11.83 16.37 14.10 17.98 9.58 13.78 12.62 18.94 15.78

Lee-Carter model applied to six populations (LC6)
LC6-JoK 19.57 14.43 17.01 15.72 24.29 16.90 20.60 19.99 24.79 22.39
LC6-CoI 17.97 13.43 15.60 14.52 23.86 17.15 20.51 16.39 21.37 18.88
LC6-ACF 17.26 12.32 16.15 14.24 23.02 13.30 18.16 15.36 23.43 19.40

Lee-Carter model applied to both genders of a country (LC2)
LC2-JoK 18.40 13.42 17.11 15.27 22.63 16.59 19.61 17.99 22.61 20.30
LC2-CoI 17.92 13.43 15.60 14.52 22.53 16.62 19.58 17.05 22.26 19.65
LC2-ACF 18.41 14.32 16.49 15.41 22.43 16.89 19.66 16.90 23.46 20.18

Lee-Carter model applied to single population (LC1)
LC1-Ind 18.25 13.43 16.26 14.85 22.53 16.78 19.66 17.05 23.44 20.24
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more accurate forecasting performance. However, this conclusion does not apply to
“Avg 2” (the average of the AAMAPEc, g, [tU+1, 2013] over both genders of a country).
The forecasting performance ranking based on “Avg 2” depends on country. For
example, according to the “Avg 2” in Table 5 for the forecasting period [1984, 2013],
the five-level hierarchical credibility model has the worst forecast accuracy and
the four-level one performs the best for the US, whereas the five-level hierarchical
credibility model has the best forecast accuracy and the four-level one performs the
worst for Japan.

• The AAMAPEc, g, [tU+1, 2013] values and their averages “Avg 6” and “Avg 2” un-
der both of the EW and MW strategies, given the same level of the hierarchical
credibility model, are close to each other.

• Among the Lee-Carter models applied to six populations, the averages of the
AAMAPEc, g, [tU+1, 2013] over six populations (“Avg 6”) show that the augment-
ed common factor model LC6-ACF is the most accurate for the forecasting periods
[2004, 2013] and [1984, 2013], the cointegrated model LC6-CoI performs the best
for the forecasting period [1994, 2013], and the joint-k model LC6-JoK is the least
accurate for all three forecasting periods. Moreover, the LC2-JoK model outper-
forms the LC6-JoK model for all three forecasting periods, the LC2-CoI model is
better than the LC6-CoI model for [2004, 2013] and [1984, 2013], and the LC2-ACF
model is worse than the LC6-ACF model for [2004, 2013] and [1984, 2013].

• From Tables 3–5, we observe that most of the AAMAPEc, g, [tU+1, 2013] values under
the hierarchical credibility models for all three forecasting periods and six popula-
tions are lower than those under the Lee-Carter models. As a result, the averages
of the AAMAPEc, g, [tU+1, 2013] over both genders of a country and over six pop-
ulations for all of the three forecasting periods under the hierarchical credibility
models are far lower than those under the Lee-Carter models. For example, for the
30-year forecasting period [1984, 2013], the averages of the AAMAPEc, g, [tU+1, 2013]

over six populations for the joint-k, cointegrated and augmented common factor
Lee-Carter models applied to six populations and two populations and for the
classical Lee-Carter model are 19.57%, 17.97%, 17.26%, 18.40%, 17.92%, 18.41%
and 18.25%, respectively, whereas those for the EW and MW strategies under the
five/four/three-level hierarchical credibility models are 14.01%, 14.02%, 14.60%,
14.28%, 15.03% and 14.55%, respectively. Therefore, the numerical illustrations
highly support the conclusion that the hierarchical credibility models outperform
the Lee-Carter models.

In summary, a hierarchical credibility model with more levels produces better pre-
diction results, and the EW and MW strategies have similar forecasting performances.
Regardless of the length of the fitting year span and forecasting year span, the hierarchi-
cal credibility models overall provide more accurate forecasts than the Lee-Carter models.
Therefore, we conclude that the hierarchical credibility model is an effective approach to
modelling multi-population mortality rates.
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Figure 5: AMAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for US Male with age span 20–84
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Figure 6: AMAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for US Female with age span 20–84
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Figure 7: AMAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for UK Male with age span 20–84
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Figure 8: AMAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for UK Female with age span 20–84
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Figure 9: AMAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for Japan Male with age span 20–84
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Figure 10: AMAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for Japan Female with age span 20–84
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Figure 11: The average of the AAMAPE
[tL, tU ]
c, g, [tU+1, 2013] over 6 populations against tL with

age span 20–84
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(a) tU = 2003, single population
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(b) tU = 2003, two populations
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(d) tU = 1993, single population
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(e) tU = 1993, two populations
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(f) tU = 1993, six populations
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(g) tU = 1983, single population
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4. Conclusions

Longevity risk is a critical issue for annuity providers, social security systems and defined
benefit pension plans. This paper applies the hierarchical credibility theory with tree
structures of three, four and five levels to modelling multi-population mortality rates.
The five-level tree structure from the bottom to the top is ’year t’, ’age x’, ’gender g’,
’country c’ and ’multi-country’, and the four-level tree structure is ’year t’, ’age x’, ’gender
g’ and ’country c’. The hierarchical credibility mortality models are fitted with male and
female mortality data of three developed countries (the US, the UK, and Japan) from
the Human Mortality Database for an age span 25–84 and a series of fitting year spans.
The classical Lee-Carter model and its three extensions for multiple populations (joint-k,
cointegrated and augmented common factor) are also fitted with the same data set for
comparisons.

The formula for Ŷc, g, x, T+1, the hierarchical credibility estimate of the decrement in
the logarithm of central death rate for country c, gender g and age x over [T, T+1], under
a five-level hierarchical structure for the special case (wc, g, x, t = 1 for all c = 1, · · · , C,
g = 1, · · · , G, x = 1, · · · , X , and t = 1, · · · , T ) is the credibility-factor-weighted average
of the average annual decrements of the four time trends Y c, g, x, •, Y c, g, •, •, Y c, •, •, • and
Y •, •, •, •. For the hierarchical mortality model, we also adopt the expanding window (EW)
and moving window (MW) strategies proposed by Tsai and Lin (2017a, b) to forecast
mortality rates for two or more years. Under the expanding window strategy, the hier-
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archical credibility estimate Ŷc, g, x, T+τ is constant for τ = 1, 2, · · · . Thus, ln(m̂c, g, x, tU+τ )

is a linear function of τ with slope Ŷc, g, x, T+1 and intercept ln(mc, g, x, tU ).

The forecasting performance is measured by the AMAPE for a single fitting year
span. Based on the figures displayed in Section 3, we conclude that models have larger
AMAPEs as the forecasting year span gets wider. Since we do not know which fitting
year span will produce the lowest AMAPE, and actually the AMAPE varies largely in the
fitting year span, we rank the models according to AAMAPE, the average of AMAPEs
over all of the fitting year spans. From Tables 3–5, we conclude that the hierarchical
credibility model with more levels overall yields better prediction, and regardless of the
forecasting year span of 10, 20 or 30-year width, the hierarchical credibility models overall
provide higher accurate forecasting results than the Lee-Carter models.

The proposed model contributes to the literature of multi-population mortality mod-
elling by incorporating the hierarchical credibility theory, which is widely used in proper-
ty and casualty insurance, to model the dependency of multi-population mortality rates.
The model is convenient to implement, and can be applied to a hierarchical tree of any
arbitrary level to fit a data set or reduced to a tree structure of four or three levels. It
is a generalization of the credibility mortality model proposed by Tsai and Lin (2017b),
which can be considered as having a three-level tree structure with population, year and
age. The mortality rates predicted from the hierarchical credibility mortality model for
multiple populations with dependency can be further used to construct a mortality index
for more accurately pricing mortality-indexed securities.

Appendix A: Multi-population Lee-Carter models

A.1 Joint-k Lee-Carter model

Carter and Lee (1992) proposed the joint-k model to govern the co-movements among the
mortality rates for multiple populations. The joint-k model is constructed in the same
way as the independent Lee-Carter model except that the time-varying index kt, i = Kt,
i = 1, · · · , r. The logarithm of central death rates, ln(mx, t, i), for lives aged x in year t
and population i can be expressed as

ln(mx, t, i) = αx, i + βx, i ×Kt + εx, t, i, x = xL, · · · , xU , t = tL, · · · , tU , i = 1, · · · , r, (A.1)

where αx, i is the average age-specific mortality factor at age x for population i, βx, i is
the age-specific reaction to Kt at age x for population i, Kt is the common index of
the mortality level in year t, and the model errors εx, t, i, t = tL, · · · , tU , capturing the
age-specific effects not reflected in the model, are assumed independent and identically
distributed.

There are two constraints
∑tU

t=tL
Kt = 0 and

∑r

i=1

∑xU

x=xL
βx, i = 1 for the joint-k

Lee-Carter model. The first constraint
∑tU

t=tL
Kt = 0 gives the estimate of αx,

α̂x, i =

∑tU
t=tL

ln(mx, t, i)

tU − tL + 1
, x = xL, · · · , xU ,

and the second constraint
∑r

i=1

∑xU

x=xL
βx, i = 1 implies the estimate of Kt,
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K̂t =
r

∑

i=1

xU
∑

x=xL

[ln(mx, t, i)− α̂x, i], t = tL, · · · , tU .

Finally, we regress [ln(mx, t, i)− α̂x, i] on K̂t without the constant term for each age x to

obtain β̂x, i.

The common time-varying index k̂t is assumed to follow a random walk with drift θ for
mortality prediction: K̂t = K̂t−1+θ+ǫt, where the time trend errors ǫ t, t = tL+1, · · · , tU ,
are assumed independent and identically distributed, and the time trend errors, {ǫt}, are
assumed to be independent of the model errors, {εx, t, i}. Then we can estimate the drift
parameter θ with

θ̂ =
1

n− 1

tU
∑

t=tL+1

(K̂t − K̂t−1) =
K̂tU − K̂tL

n− 1
,

where n = tU − tL + 1. The logarithm of the projected central death rate for age x in
year tU + τ and population i is given by

ln(m̂x, tU+τ, i) = α̂x, i+β̂x, i×(K̂tU+τ×θ̂) = ln(m̂x, tU , i)+(β̂x, i×θ̂)×τ, τ = 1, · · · , (A.2)

a linear function of τ with intercept ln(m̂x, tU , i) and slope (β̂x, i · θ̂), where ln(m̂x, tU , i) =

α̂x, i + β̂x, i × K̂tU .

A.2 Cointegrated Lee-Carter model

Unlike the joint-k model, which assumes that all populations have the common time-
varying index K, the cointegrated model proposed by Li and Hardy (2011) assumes the
time-varying index for population i (i > 2) is linearly related to the time-varying index
for population 1, the base population. Therefore, the time-varying index for population
i (i > 2) needs to be re-estimated in this model.

Assume that the mortality rate for lives aged x in year t and population i follows the
classical Lee-Carter model as follows:

ln(mx, t, i) = αx, i+βx, i×kt, i+ εx, t, i, x = xL, · · · , xU , t = tL, · · · , tU , i = 1, · · · , r. (A.3)

There are two constraints
∑tU

t=tL
kt, i = 0 and

∑xU

x=xL
βx, i = 1, i = 1, · · · , r for the

cointegrated Lee-Carter model. The estimate of αx can be obtained by the constraint
∑tU

t=tL
kt, i = 0 as

α̂x, i =

∑tU
t=tL

ln(mx, t, i)

tU − tL + 1
, x = xL, · · · , xU ,

and the estimate of kt, i can be obtained with the remaining constraint
∑xU

x=xL
βx, i = 1

as

k̂t, i =

xU
∑

x=xL

[ln(mx, t, i)− α̂x, i], x = xL, · · · , xU .

Again, we regress [ln(mx, t, i)− α̂x, i] on k̂t, i without the constant term for each age x to

get β̂x, i.

The time trend k̂t, i is assumed to follow a random walk with drift θi for mortality

prediction: k̂t, i = k̂t−1, i + θi + ǫt, i, where the time trend errors ǫt, i, t = tL + 1, · · · , tU ,
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are assumed independent and identically distributed, and the time trend errors, {ǫt, i},
are assumed to be independent of the model errors, {εx, t, i}. Then the drift parameter θi
for population i can be estimated by θ̂i = (k̂tU ,i − k̂tL,i)/(n− 1), i = 1, · · · , r.

The cointegrated Lee-Carter model assumes there is a linear relationship plus an error
term et, i between k̂t, i for i = 2, · · · , r and k̂t, 1. Specifically, k̂t, i = ai + bi × k̂t, 1+ et, i, i =

2, · · · , r. Then we re-estimate kt, i using the simple linear regression as
ˆ̂
kt, i = âi+ b̂i× k̂t, 1

for i = 2, · · · , r, implying that the estimate of the drift of the time-varying index for

population i,
ˆ̂
θi, is given by

ˆ̂
θi =



















1

n− 1

tU
∑

t=tL+1

(k̂t,1 − k̂t−1, 1) =
k̂tU , 1 − k̂tL, 1

n− 1
= θ̂1, i = 1,

ˆ̂
ktU , i −

ˆ̂
ktL, i

n− 1
= b̂i ×

k̂tU , 1 − k̂tL,1
n− 1

= b̂i × θ̂1, i = 2, · · · , r.

Similarly, the logarithm of the forecasted central death rates for lives aged x in year tU+τ
and population i is given as

ln(m̂x, tU+τ, i) = α̂x, i+β̂x, i×(k̂tU , i+τ×
ˆ̂
θi) = ln(m̂x, tU , i)+(β̂x, i×

ˆ̂
θi)×τ, τ = 1, · · · , (A.4)

a linear function of τ with intercept ln(m̂x, tU , i) and slope (β̂x, i ·
ˆ̂
θi), where ln(m̂x, tU , i) =

α̂x, i + β̂x, i × k̂tU , i.

A.3 Augmented common factor Lee-Carter model

To deal with the divergence in forecasting multi-population mortality rates over the long-
term, Li and Lee (2005) proposed the augmented common factor model which not only
considers the commonalities in the historical experience but also includes the individual
differences in the trends.

First, the independent Lee-Carter model is modified to a common factor model by
setting a common age-specific term Bx and a uniform time-varying index Kt for all
populations as follows:

ln(mx, t, i) = αx, i +Bx ×Kt + εx, t, i, x = xL, · · · , xU , t = tL, · · · , tU , i = 1, · · · , r,

subject to two constraints,
∑tU

t=tL
Kt = 0 and

∑r

i=1

∑xU

x=xL
wiBx = 1, where wi, set to

be 1/r in this paper, is the weight for population i and
∑r

i=1wi = 1. We can similarly
estimate αx by

α̂x, i =

∑tU
t=tL

ln(mx, t, i)

tU − tL + 1
, x = xL, · · · , xU ,

and Kt as

K̂t =
r

∑

i=1

xU
∑

x=xL

wi × [ln(mx, t, i)− α̂x, i], t = tL, · · · , tU .

Then B̂x can be similarly obtained by regressing
∑r

i=1wi × [ln(mx, t, i) − α̂x, i] on K̂t

without the constant term for each age x.
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To include the individual differences in the trends, Li and Lee (2005) added a factor
β ′

x, i × k′

t, i to the common factor model to get

ln(mx, t, i) = αx, i +Bx ×Kt + β ′

x, i × k′

t, i + εx, t, i, (A.5)

with an extra constraint
∑xU

x=xL
β ′

x, i = 1, which is called the augmented common factor

model. The extra constraint implies k̂′

t, i =
∑xU

x=xL
[ln(mx, t, i)− α̂x, i − B̂x × K̂t], and β̂ ′

x, i

can be obtained by regressing [ln(mx, t, i)− α̂x, i − B̂x × K̂t] on k̂′

t, i without the constant
term for each age x.

Similarly, we assume that both time trends K̂t and k̂′

t, i follow a random walk with

drifts θ and θ′i, respectively. Specifically, K̂t = K̂t−1 + θ + ǫt, and k̂′

t, i = k̂′

t−1, i + θ′i + ǫt, i,
where the time trend errors ǫt and ǫt, i, t = tL + 1, · · · , tU , are assumed independent
and identically distributed, and all of the three error terms, {εx, t, i}, {ǫt} and {ǫt, i},
are assumed to be independent. Again, the drift parameters θ and θ′i can be similarly
estimated by θ̂ = (K̂tU − K̂tL)/(n− 1) and θ̂′i = (k̂′

tU , i − k̂′

tL, i
)/(n− 1).

Finally, the logarithm of the predicted central death rates for lives aged x in year
tU + τ and population i can be expressed as

ln(m̂x, tU+τ, i) = α̂x, i + B̂x × (K̂tU + τ × θ̂) + β̂ ′

x, i × (k̂′

tU , i + τ × θ̂′i)

= ln(m̂x, tU , i) + (B̂x × θ̂ + β̂ ′

x, i × θ̂′i)× τ, τ = 1, · · · , (A.6)

a linear function of τ with intercept ln(m̂x, tU , i) and slope (B̂x · θ̂ + β̂ ′

x, i · θ̂
′

i), where

ln(m̂x, tU , i) = α̂x, i + B̂x × K̂tU + β̂ ′

x, i × k̂′

tU , i.

Appendix B: Proofs of Propositions 1–3

B.1 Proof of Proposition 1

Proof: By (2.7),

C
∑

c=1

G
∑

g=1

X
∑

x=1

Ŷc, g, x, T+τ = α̂(1)
τ

C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+τ

c, g, x, • + [(1− α̂(1)
τ ) · α̂(2)

τ ]
C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+τ

c, g, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · α̂(3)
τ ]

C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+τ

c,•, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · (1− α̂(3)
τ )]

C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+τ

•, •, •, •

= α̂(1)
τ · C ·G ·X · Y

T+τ

•, •, •, • + [(1− α̂(1)
τ ) · α̂(2)

τ ] · C ·G ·X · Y
T+τ

•, •, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · α̂(3)
τ ] · C ·G ·X · Y

T+τ

•, •, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · (1− α̂(3)
τ )] · C ·G ·X · Y

T+τ

•, •, •, •

= C ·G ·X · Y
T+τ

•, •, •, •.

Dividing (C ·G ·X) on both sides, we have for τ = 1, 2, · · · ,
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1

C ·G ·X

C
∑

c=1

G
∑

g=1

X
∑

x=1

Ŷc, g, x, T+τ = Y
T+τ

•, •, •, • =
1

C ·G ·X

C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+τ

c, g, x, •.

2

B.2 Proof of Proposition 2

Proof: This proposition is proven by mathematical induction on τ . First, for τ = 2, by
definition, (2.8) and Proposition 1,

Y
T+2

•, •, •, • =
1

C ·G ·X

C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+2

c, g, x, •

=
1

C ·G ·X · (T + 1)

C
∑

c=1

G
∑

g=1

X
∑

x=1

[ T
∑

t=1

Yc, g, x, t + Ŷc, g, x, T+1

]

=
T

T + 1
· Y

T+1

•, •, •, • +
1

T + 1
Y

T+1

•, •, •, • = Y
T+1

•, •, •, •.

Next, assume that Y
T+τ

•, •, •, • = Y
T+1

•, •, •, • holds. Then (2.8) and Proposition 1 lead to

Y
T+τ+1

•, •, •, • =
1

C ·G ·X

C
∑

c=1

G
∑

g=1

X
∑

x=1

Y
T+τ+1

c, g, x, •

=
1

C ·G ·X · (T + τ)

C
∑

c=1

G
∑

g=1

X
∑

x=1

[( T
∑

t=1

Yc, g, x, t +
T+τ−1
∑

t=T+1

Ŷc, g, x, t

)

+ Ŷc, g, x, T+τ

]

=
1

C ·G ·X · (T + τ)

C
∑

c=1

G
∑

g=1

X
∑

x=1

[

(T + τ − 1) · Ȳ T+τ
c, g, x, • + Ŷc, g, x, T+τ

]

=
T + τ − 1

T + τ
· Y

T+τ

•, •, •, • +
1

T + τ
Ȳ T+τ
•, •, •, • = Y

T+1

•, •, •, •.

Therefore, we prove that Y
T+τ

•, •, •, • = Y
T+1

•, •, •, • for τ = 2, 3, · · · under the EW strategy. 2

B.3 Proof of Proposition 3

Proof: Let fτ = (T +τ) · σ̂2
2+ σ̂2

1, gτ = X · (T +τ) · σ̂2
3+fτ and hτ = G ·X · (T +τ) · σ̂2

4+gτ .
Then by (2.12), (2.13) and (2.14), we have

α̂
(1)
τ =

fτ−1−σ̂2
1

fτ−1
, 1− α̂

(1)
τ =

σ̂2
1

fτ−1
, (1− α̂

(1)
τ ) α̂

(2)
τ =

σ̂2
1
(gτ−1−fτ−1)

fτ−1·gτ−1
,

α̂
(2)
τ = gτ−1−fτ−1

gτ−1
, 1− α̂

(2)
τ = fτ−1

gτ−1
, (1− α̂

(1)
τ ) (1− α̂

(2)
τ ) α̂

(3)
2 =

σ̂2
1(hτ−1−gτ−1)

gτ−1·hτ−1
,

α̂
(3)
τ = hτ−1−gτ−1

hτ−1
, 1− α̂

(3)
τ = gτ−1

hτ−1
, (1− α̂

(1)
τ ) (1− α̂

(2)
τ ) (1− α̂

(3)
2 ) =

σ̂2
1

hτ−1
.

From (2.7), we can express Ŷc, g, x, T+τ as
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Ŷc, g, x, T+τ

=
1

fτ−1 gτ−1 hτ−1

[

gτ−1 hτ−1 (fτ−1 − σ̂2
1) · Y

T+τ

c, g, x, • + σ̂2
1 (gτ−1 − fτ−1) hτ−1 · Y

T+τ

c, g, •, •

+σ̂2
1 (hτ−1 − gτ−1) fτ−1 · Y

T+τ

c, •, •, • + σ̂2
1 fτ−1 gτ−1 · Y

T+τ

•, •, •, •

]

. (B.1)

Our goal is to show fτ gτ hτ ·Ŷc, g, x, T+τ+1 = fτ gτ hτ ·Ŷc, g, x, T+τ , which implies Ŷc, g, x, T+τ+1 =

Ŷc, g, x, T+τ , τ = 1, 2, · · · , and thus Ŷc, g, x, T+τ = Ŷc, g, x, T+1, τ = 2, 3, · · · . First, we let

DIFF = fτ gτ hτ · Ŷc, g, x, T+τ+1 − fτ−1 gτ−1 hτ−1 · Ŷc, g, x, T+τ .

Then our goal changes to prove

fτ gτ hτ · Ŷc, g, x, T+τ = fτ gτ hτ · Ŷc, g, x, T+τ+1 = fτ−1 gτ−1 hτ−1 · Ŷc, g, x, T+τ +DIFF,

or equivalently, DIFF = (fτ · gτ · hτ − fτ−1 · gτ−1 · hτ−1) · Ŷc, g, x, T+τ .

By (B.1), DIFF is the sum of the following four expressions (B.2)−(B.5):

gτ hτ (fτ − σ̂2
1) · Y

T+τ+1

c, g, x, • − gτ−1 hτ−1 (fτ−1 − σ̂2
1) · Y

T+τ

c, g, x, •

= σ̂2
2

[

gτhτ

( T
∑

t=1

Yc, g, x, t +
T+τ
∑

t=T+1

Ŷc, g, x, t

)

−gτ−1hτ−1

( T
∑

t=1

Yc, g, x, t +
T+τ−1
∑

t=T+1

Ŷc, g, x, t

)]

= σ̂2
2

[

(gτ hτ − gτ−1 hτ−1)

( T
∑

t=1

Yc, g, x, t +
T+τ−1
∑

t=T+1

Ŷc, g, x, t

)

+gτ hτ · Ŷc, g, x, T+τ

]

= (gτ hτ − gτ−1 hτ−1) (fτ−1 − σ̂2
1) · Y

T+τ

c, g, x, • + σ̂2
2 gτ hτ · Ŷc, g, x, T+τ , (B.2)

σ̂2
1(gτ − fτ ) hτ · Y

T+τ+1

c, g, •, • − σ̂2
1 (gτ−1 − fτ−1) hτ−1 · Y

T+τ

c, g, •, •

= σ̂2
1 σ̂

2
3

[

hτ

X
∑

x=1

( T
∑

t=1

Yc, g, x, t +

T+τ
∑

t=T+1

Ŷc, g, x, t

)

−hτ−1

X
∑

x=1

( T
∑

t=1

Yc, g, x, t +

T+τ−1
∑

t=T+1

Ŷc, g, x, t

)]

= σ̂2
1 σ̂

2
3

[

(hτ − hτ−1)

X
∑

x=1

( T
∑

t=1

Yc, g, x, t +

T+τ−1
∑

t=T+1

Ŷc, g, x, t

)

+hτ

X
∑

x=1

Ŷc, g, x, T+τ

]

= σ̂2
1 (hτ − hτ−1) (gτ−1 − fτ−1) · Y

T+τ

c, g, •, • + σ̂2
1 σ̂

2
3 hτ

X
∑

x=1

Ŷc, g, x, T+τ , (B.3)

29



σ̂2
1 (hτ − gτ ) fτ · Y

T+τ+1

c, •, •, • − σ̂2
1 (hτ−1 − gτ−1) fτ−1 · Y

T+τ

c, •, •, •

= σ̂2
1 σ̂

2
4

[

fτ

G
∑

g=1

X
∑

x=1

( T
∑

t=1

Yc, g, x, t +

T+τ
∑

t=T+1

Ŷc, g, x, t

)

− fτ−1

G
∑

g=1

X
∑

x=1

( T
∑

t=1

Yc, g, x, t +
T+τ−1
∑

t=T+1

Ŷc, g, x, t

)]

= σ̂2
1 σ̂

2
4

[

(fτ − fτ−1)

G
∑

g=1

X
∑

x=1

( T
∑

t=1

Yc, g, x, t +

T+τ−1
∑

t=T+1

Ŷc, g, x, t

)

+fτ

G
∑

g=1

X
∑

x=1

Ŷc, g, x, T+τ

]

= σ̂2
1 (fτ − fτ−1) (hτ−1 − gτ−1) · Y

T+τ

c, •, •, • + σ̂2
1 σ̂

2
4fτ

G
∑

g=1

X
∑

x=1

Ŷc, g, x, T+τ , (B.4)

σ̂2
1 fτgτ · Y

T+τ+1

•, •, •, • − σ̂2
1 fτ−1 gτ−1 · Y

T+τ

•, •, •, • = σ̂2
1 (fτ gτ − fτ−1 gτ−1) · Y

T+τ

•, •, •, •. (B.5)

Next,

fτgτhτ−fτ−1gτ−1hτ−1 = (fτ−1+σ̂2
2)gτhτ−fτ−1gτ−1hτ−1 = σ̂2

2gτhτ+fτ−1(gτhτ−gτ−1hτ−1),

and

(fτgτhτ−fτ−1gτ−1hτ−1)·Ŷc, g, x, T+τ = σ̂2
2gτhτ ·Ŷc, g, x, T+τ+fτ−1(gτhτ−gτ−1hτ−1)·Ŷc, g, x, T+τ .

(B.6)
The first term of (B.6) cancels out the second term of (B.2), and the second term of (B.6)
by (B.1) gives

(gτhτ − gτ−1hτ−1)(fτ−1 − σ̂2
1) · Y

T+τ

c, g, x, • +
σ̂2
1

gτ−1
(gτhτ − gτ−1hτ−1)(gτ−1 − fτ−1) · Y

T+τ

c, g, •, •

+
σ̂2
1

gτ−1hτ−1
(gτhτ − gτ−1hτ−1)(hτ−1 − gτ−1)fτ−1 · Y

T+τ

c, •, •, •

+
σ̂2
1

hτ−1

(gτhτ − gτ−1hτ−1)fτ−1 · Y
T+τ

•, •, •, •. (B.7)

The first term of (B.7) cancels out the first term of (B.2), so the remaining task is to
prove that the sum of the last three terms of (B.7) equals the sum of (B.3), (B.4) and
(B.5). Since

X
∑

x=1

Ŷc, g, x, T+τ =
X

fτ−1gτ−1hτ−1

{[

gτ−1hτ−1(fτ−1 − σ̂2
1) + σ̂2

1(gτ−1 − fτ−1)hτ−1

]

· Y
T+τ

c, g, •, •

+ σ̂2
1(hτ−1 − gτ−1)fτ−1 · Y

T+τ

c, •, •, • + σ̂2
1fτ−1gτ−1 · Y

T+τ

•, •, •, •

}

=
X

fτ−1gτ−1hτ−1

[

fτ−1hτ−1(gτ−1 − σ̂2
1) · Y

T+τ

c, g, •, •

+ σ̂2
1(hτ−1 − gτ−1)fτ−1 · Y

T+τ

c, •, •, • + σ̂2
1fτ−1gτ−1 · Y

T+τ

•, •, •, •

]

=
X(gτ−1 − σ̂2

1)

gτ−1

· Y
T+τ

c, g, •, • +
Xσ̂2

1(hτ−1 − gτ−1)

gτ−1hτ−1

· Y
T+τ

c, •, •, • +
Xσ̂2

1

hτ−1

· Y
T+τ

•, •, •, •

(B.8)
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and

G
∑

g=1

X
∑

x=1

Ŷc, g, x, T+τ =
GX

fτ−1gτ−1hτ−1

{[

fτ−1hτ−1(gτ−1 − σ̂2
1) + σ̂2

1(hτ−1 − gτ−1)fτ−1

]

· Y
T+τ

c, •, •, •

+ σ̂2
1fτ−1gτ−1 · Y

T+τ

•, •, •, •

}

=
GX(hτ−1 − σ̂2

1)

hτ−1
· Y

T+τ

c, •, •, • +
GXσ̂2

1

hτ−1
· Y

T+τ

•, •, •, •, (B.9)

comparing the coefficients of Y
T+τ

c, g, •, •, Y
T+τ

c, •, •, • and Y
T+τ

•, •, •, • in the last three terms of (B.7)
with those in (B.3), (B.4) and (B.5) associated with (B.8) and (B.9), it is sufficient to
show
1. coefficient of Y

T+τ

c, g, •, •:

σ̂2
1

gτ−1

(gτhτ − gτ−1hτ−1)(gτ−1− fτ−1) = σ̂2
1(hτ −hτ−1)(gτ−1− fτ−1)+

Xσ̂2
1σ̂

2
3hτ (gτ−1 − σ̂2

1)

gτ−1

;

(B.10)

2. coefficient of Y
T+τ

c, •, •, •:

σ̂2
1

gτ−1 hτ−1
(gτhτ − gτ−1hτ−1)(hτ−1 − gτ−1)fτ−1

=
X σ̂4

1 σ̂
2
3 hτ (hτ−1 − gτ−1)

gτ−1 hτ−1

+ σ̂2
1 (fτ − fτ−1)(hτ−1 − gτ−1) +

GX σ̂2
1 σ̂

2
4 fτ (hτ−1 − σ̂2

1)

hτ−1

;

(B.11)

3. coefficient of Y
T+τ

•, •, •, •:

σ̂2
1

hτ−1

(gτhτ − gτ−1hτ−1)fτ−1 =
X σ̂4

1 σ̂
2
3 hτ

hτ−1

+
GX σ̂4

1 σ̂
2
4 fτ

hτ−1

+ σ̂2
1 (fτ gτ − fτ−1 gτ−1). (B.12)

After rearrangement and simplification, the three equations (B.10), (B.11) and (B.12)
we need to show become

(gτ−1 − fτ−1)(gτ − gτ−1) = X σ̂2
3 (gτ−1 − σ̂2

1),

(hτ−1 − gτ−1)(fτ−1 gτ hτ − fτ gτ−1 hτ−1 −X σ̂2
1 σ̂

2
3 hτ ) = GX σ̂2

4 fτ gτ−1 (hτ−1 − σ̂2
1),

gτ (fτ−1 hτ − fτ hτ−1) = X σ̂2
1 (σ̂

2
3 hτ +G σ̂2

4 fτ ),

respectively, which can be verified directly by the definitions of fτ , gτ and hτ . 2
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