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Constructing Two-Dimensional Mortality Improvement Scales for 
Canadian Pension Plans and Insurers: 

A Stochastic Modelling Approach1 
Johnny Siu-Hang Li2 and Yanxin Liu3 

 

Abstract 
Recently, the actuarial professions in Canada, the U.S. and the UK have adopted an innovative 
two-dimensional approach to projecting future mortality. In contrast to the conventional 
approach, the two-dimensional approach permits mortality improvement rates to vary not only 
with age but also with time. Despite being an important breakthrough, the newly proposed two-
dimensional mortality improvement scales are subject to several significant limitations, most 
notably a heavy reliance on expert judgments and a lack of measures of uncertainty. In this paper, 
we aim to develop a method for producing two-dimensional mortality improvement scales with 
more solid statistical justifications. To this end, we propose a ‘heat wave’ model, in which short- 
and long-term mortality improvements are treated respectively as ‘heat waves’ that taper off 
over time and ‘background improvements’ that always exist. Using the model, one can derive 
two-dimensional mortality improvement scales with minimal expert judgment. Moreover, with 
likelihood-based inference methods, the uncertainty surrounding the best estimate of mortality 
improvement rates can be quantified.  

 

1 Introduction 
In the developed world, life expectancy has been rising steadily except during periods of war and 
worldwide pandemic outbreaks. To incorporate future mortality improvements into pricing and 
valuation, actuaries often rely on mortality improvement scales, which specify the expected rates 
of reduction in mortality by means of some simple mathematical formulas. A projection of future 
mortality can be obtained by applying an appropriate mortality improvement scale to a ‘base 
mortality table’, which reflects the current mortality level of the pool of pensioners or insured 
lives under consideration. 

For quite some time, the Society of Actuaries (SOA) (1995) Scale AA has been widely used by 
pension plans in Canada and the U.S. for valuation purposes. Under Scale AA, death probabilities 
𝑡𝑡 years after the base year 𝑡𝑡𝑏𝑏 are calculated using the following equation:  

𝑞𝑞𝑥𝑥,𝑡𝑡𝑏𝑏+𝑡𝑡 = 𝑞𝑞𝑥𝑥,𝑡𝑡𝑏𝑏(1 − 𝐴𝐴𝐴𝐴𝑥𝑥)𝑡𝑡, 

                                                      
1 Address correspondence to Johnny Siu-Hang Li, Department of Statistics and Actuarial Science, University of 
Waterloo, 200 University Ave. W., Waterloo, Ontario, Canada, N2L 3G1. Email: shli@uwaterloo.ca 
2 Department of Statistics and Actuarial Science, University of Waterloo, Ontario, Canada. 
3 Department of Finance, University of Nebraska Lincoln, Nebraska, U.S.A. 
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where 𝑞𝑞𝑥𝑥,𝑡𝑡𝑏𝑏 is the mortality rate4 for age 𝑥𝑥 specified in the base table, and 𝐴𝐴𝐴𝐴𝑥𝑥  represents 
the expected mortality improvement rate at age 𝑥𝑥 (see figure 1). One problem of Scale AA is 
that it understates the mortality improvement experienced in recent years. This problem can be 
seen in table 1, where we compare Scale AA with the annualized improvement rates that are 
realized over 1996–2005 (the decade after Scale AA was launched). 

Figure 1: The values of 𝐴𝐴𝐴𝐴𝑥𝑥  in Scale AA, males and females. 

 
Table 1: Scale AA and the actual rates of reduction in Canadian mortality from 1996 to 2005 for 
various age groups. The actual rates of reduction are calculated using smoothed mortality rates 

that are derived by fitting a P-splines regression (Currie et al., 2004) to the raw data. 

  Age group   Scale AA   Actual Reduction (1996–2005) 

Males 

-64   1.48%   2.71%  

-69   1.36%   2.89%  

-74   1.50%   2.84%  

-79   1.28%   2.71%  

Females 

-64   0.50%   1.77%  

-69   0.50%   1.70%  

-74   0.62%   1.69%  

-79   0.74%   1.81%  

 

                                                      
4 More precisely, qx,t is the probability that an individual aged x exactly at time t – 1 (i.e., the beginning of year t) 
dies during the time interval of [t – 1, t). 

Males are represented in blue. 

Females are represented in 
red. 
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Another significant problem of Scale AA is that it does not yield a logical continuation of past 
mortality improvement rates. This problem can be visualized in figure 2, which shows the heat 
map of historical mortality improvement rates for Canadian males (the left portion) and the 
corresponding expected future mortality improvement rates implied by Scale AA (the right 
portion). The heat map can be interpreted as follows:  

• Each row in the heat map represents mortality improvement rates for a specific age. The 
variation of colors along the vertical dimension thus represents the age effect of mortality 
improvement. 

• Each column in the heat map represents mortality improvement rates for a specific 
calendar year. The variation of colors along the horizontal dimension therefore represents 
the period (time-related) effect of mortality improvement. 

• Each diagonal (from lower-left to upper-right) in the heat map represents mortality 
improvement rates for a specific year of birth. Hence, the variation of colors among 
diagonals represents the cohort (year-of-birth-related) effect of mortality improvement. 

Age, period and cohort effects are clearly observed in the historical mortality improvement rates. 
However, Scale AA only takes account of the age effect, because it simply assumes that future 
mortality improvement rates are constant over time. For the same reason, the transition of the 
heat map from past to future is not at all logical. 

Figure 2: Heat map of historical mortality improvement rates for Canadian males (up to 2011) 
and mortality improvement rates implied by Scale AA for males (after 2011). 
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In recent years, the actuarial profession in North America has recognized the limitation of Scale 
AA, and has started to consider two-dimensional mortality improvement scales (of which the 
scale factors vary with both age and time instead of just age). Generally speaking, a two-
dimensional mortality improvement scale is composed of the following three components. 

1. A short-term scale for the near future: the scale factors in the short-term scale are 
generally high, reflecting the rapid mortality improvement observed in recent decades. 

2. A long-term scale for the distant future: compared to those in the short-term scale, the 
scale factors in the long-term (ultimate) scale are much lower, incorporating the view that 
rapid mortality improvement will not last forever. 

3. A mid-term scale for the transitional phase: the scale factors in the mid-term scale are 
obtained by interpolating between those in the long- and short-term scales. 

In Canada, the Office of the Chief Actuary (2014) developed a two-dimensional mortality 
improvement scale for the purpose of actuarial valuations of the Canada Pension Plan and 
Canada’s national Old Age Security (OAS) Program. The Canadian Institute of Actuaries (CIA) has 
also made a huge effort on developing mortality improvement scales. In 2009, its Committee on 
Canadian Pensioners’ Mortality Experience commissioned a research project, an outcome of 
which is a two-dimensional improvement scale that is developed using data from the 
Canada/Québec Pension Plan and an array of assumptions (Adam, 2012). Then, in 2014, the CIA 
(2014) launched the CPM-B scale, a two-dimensional mortality improvement scale created for 
actuarial valuations for a broad range of pension plans in Canada. In April 2017, the CIA (2017) 
released the MI-2017 scale, an update of the CPM-B scale, derived using more recent mortality 
data. Later in the year, the Actuarial Standards Board proposed that MI-2017 be promulgated for 
the purposes of the valuation of insurance contracts in Canada. For the reader’s information, the 
MI-2017 scale is reviewed in Section 2. 

In the U.S., the topic of two-dimensional improvement scales was first studied in 2012 by the 
SOA’s Retirement Plans Experience Committee (RPEC), which developed Scale BB to replace the 
already obsolete Scale AA (SOA, 2012). In 2014, the RPEC created another two-dimensional 
mortality improvement scale known as MP-2014 (SOA, 2014), applicable to a broad range of 
retirement programs in the U.S. The MP-2014 scale was subsequently updated in 2015, 2016 and 
2017. The updated scales are respectively known as MP-2015, MP-2016 and MP-2017 (SOA, 
2015, 2016 and 2017). For the reader’s information, the MP-2017 scale is reviewed in Section 2. 

Although the move from one to two dimensions represents an important breakthrough, the 
existing two-dimensional mortality improvement scales are still subject to several significant 
limitations.  

First, the existing two-dimensional scales provide only a best estimate of future mortality, but 
give no measure of uncertainty surrounding the best estimate. Without any measure of 
uncertainty, the scales do not aid users in setting Margins for Adverse Deviations (MfADs). For 
the same reason, the scales do not provide sufficient information for assessing the underlying 
longevity risk and developing risk management solutions (e.g., longevity swaps). 
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Second, the production of the existing two-dimensional scales cannot be regarded as an exact 
science. More specifically, the long-term scale factors in the existing two-dimensional scales were 
determined by expert judgments and/or by making reference to the long-term mortality 
assumptions used in other jurisdictions. Statistical justifications for the assumed long-term scale 
factors are yet to be sought. Likewise, the durations of the transitional phases in the existing two-
dimensional scales were decided subjectively. As valuation results are typically sensitive to the 
assumed transitional phase duration, questions arise as to whether this important parameter can 
be estimated more rigorously. 

In view of the aforementioned limitations, this study is set out to develop a stochastic mortality 
model that allows us to produce two-dimensional mortality improvement scales that (1) are in 
line with the spirit of the existing two-dimensional scales in the sense that short-, medium- and 
long-term scale factors are different, (2) involve less subjectivity, (3) come with measures of 
uncertainty, and (4) are easy to implement with spreadsheet programs and actuarial software. 
To this end, we propose the ‘heat wave’ model, which is composed of the following components: 

i. Background improvements: similar to the concept of background radiation in physics, 
long-term mortality improvements are regarded as background improvements that 
always exist. They are modeled by usual parametric structures and time-series processes 
such as ARIMA. 

ii. Heat waves: in line with the conjecture behind the existing two-dimensional scales, recent 
rapid mortality improvements are considered as ‘heat waves’, which are expected to 
diminish over time. They are modeled using methods similar to wavelets and Fourier 
series in time-series analysis. This component also decides the speed at which mortality 
improvement rates converge to their long-term values. 

The distinction between background improvements and heat waves makes our proposed model 
stand out from typical stochastic mortality models in which the evolution of mortality is driven 
entirely by one or more time-series processes. Because the proposed model contains some 
bounded parameters, maximum likelihood estimates are not straightforward to obtain. To 
overcome this technical challenge, the barrier method for constrained optimization is utilized 
(Nocedal and Wright, 1999). Empirically, the estimated heat wave models yield scale factors that 
extend the patterns of historical mortality improvement rates in a logical manner. 

To our knowledge, the heat wave model is the unique approach that satisfies all of the four 
criteria. Both the Lee–Carter model (Lee and Carter, 1992) and the Cairns–Blake–Dowd model 
(Cairns et al., 2006) imply scale factors that are invariant with time (i.e., one-dimensional). The 
cohort generalizations of these models (Cairns et al., 2009) do yield scale factors that vary with 
both age and time, but, as we demonstrate later in this article, the variation is not quite 
reasonable. The approach considered recently by the Continuous Mortality Investigation Bureau 
(2017a, 2017b) of the Institute and Faculty of Actuaries in the UK is somewhat more model-based 
and data-driven, but it still contains no measure of uncertainty. The method suggested by Cairns 
(2017) comes with measures of uncertainty, but it is not entirely statistically rigorous as it entails 
a subjective tweak of the drifts of the underlying time-series processes. 
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We have applied the proposed method to data for both Canada and the U.S., and for both 
genders. However, for the sake of space, we only report results that are generated using data for 
Canadian males. All of the required data (death counts and exposures) are obtained from the 
Human Mortality Database. 

The rest of this paper is structured as follows. Section 2 briefly reviews the two-dimensional 
mortality improvement scales that are currently used in Canada and the U.S. Section 3 presents 
the heat wave model and discusses the demographic intuitions behind the model. Section 4 
details the estimation procedure and presents the estimation results. Section 5 compares the 
heat wave model with several well-known existing stochastic mortality models. Section 6 explains 
how measures of uncertainty can be derived. Section 7 concludes the paper. 

 

2 A Review of MI-2017 and MP-2017 
The CIA’s MI-2017 and the SOA’s MP-2017 are constructed by the same principles, both of which 
contain a short-term scale for projecting mortality in the near future, a long-term scale for 
projecting mortality in the distant future, and a mid-term scale for projecting mortality in the 
transitional phase. We now describe how the three components in MI-2017 and MP-2017 are 
obtained. 

2.1 MI-2017 
According to the CIA (2017), the short-, mid- and long-term components of MI-2017 are 
constructed as follows: 

• Short-term 

In MI-2017, the short-term rates are set equal to the mortality improvement rates implied 
by a two-dimensional Whittaker–Henderson graduation that is applied to data over the 
period of 1970 to 2015. The data are obtained from the Human Mortality Database 
(1970–2011) and the Canadian OAS Program plan (2012–2015). 

The short-term rates at and beyond age 105 are set to zero. For ages 96 to 104, the short-
term rates are calculated by linearly interpolating between the improvement rates 
(obtained from the Whittaker–Henderson graduation) at age 95 and 105. 

The short-term rates are applicable up to year 2013, after which the mid-term scale kicks 
in. The two-year set-back (2013 instead of 2015) is because of an undesirable edge effect 
that may have possibly incurred in the graduation. 

• Long-term 

In MI-2017, the long-term rates are obtained by trending past observations and 
considering a range of opinions from experts in the field. The long-term improvement rate 
for all ages up to and including 90 is set to 1.0% per annum. This value is trended linearly 
to 0.2% per annum at age 100, and further trended linearly to 0% at age 105. The long-
term rate beyond age 105 is set to 0%. 
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• Mid-term 

In MI-2017, the transitional phases for different age groups are different. For ages 0 to 
40, the mid-term scale applies to 2014 to 2023 (10 years). For ages 60 and above, the mid-
term scale applies to 2014 to 2033 (20 years). For ages 41 to 59, the lengths of the 
transitional phases are obtained by linear interpolations. 

The mid-term rates are determined by cubic polynomials, one for each age. The four 
parameters in each cubic polynomial are calculated by using the corresponding 
improvement rates at the beginning and end points of the transitional phase, setting the 
slope of the polynomial to zero at the end of the transitional phrase, and setting the slope 
of the polynomial to the slope of the corresponding short-term rates between 2012 and 
2013 (subject to a maximum absolute value of 0.003). 

2.2 MP-2017 
According to the SOA (2017), the short-, long- and mid-term components of MP-2017 are 
constructed as follows: 

• Short-term 

In MP-2017, the short-term rates are obtained by applying a two-dimensional Whittaker–
Henderson graduation to data over the period of 1951 to 2015. The short-term rates are 
applicable to projections up to 2013. The two-year set-back from 2015 is, again, to 
mitigate any potential for increased sensitivity around the edges of the graduated data.  

• Long-term 

In MP-2017, the long-term rate is set to 1.0% per annum for all ages up to and including 
85. The long-term rate is trended linearly to 0.85% per annum at age 95, and further 
trended to 0% at age 115. The choice of the 1.0% long-term rate has remained unchanged 
since the MP-20xx scale was first released in 2014. According to the SOA (2014), the 
choice is based on the long-term averages of the U.S. population’s historical mortality 
improvement rates, the US Social Security Administration’s intermediate-cost 
assumption, and expert opinions. 

• Mid-term 

In MP-2017, the mid-term rates are derived from a ‘double cubic interpolation’ 
methodology that blends the short- and long-term rates. Each mid-term rate is computed 
as the simple arithmetic average of the values developed from two separate cubic 
interpolations. The first interpolation, which spans 10 years, is performed across a fixed 
age path. The second interpolation, which spans 20 years, is performed along a fixed year-
of-birth path. The reader is referred to the SOA (2014) for details concerning how the 
cubic polynomials are calibrated. 
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3 The Heat Wave Model 
3.1 Definition 
Let 𝑚𝑚𝑥𝑥,𝑡𝑡 be the underlying central rate of death at age 𝑥𝑥 and in calendar year 𝑡𝑡. Suppose that 
the data set under consideration spans an age range of [𝑥𝑥0, 𝑥𝑥1] and a sample period of [𝑡𝑡0, 𝑡𝑡1]. 
The heat wave model is defined as follows:  

ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡 + 𝑐𝑐𝑥𝑥 ∑𝑡𝑡
𝑗𝑗=𝑡𝑡0 𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃), (1) 

where 𝑎𝑎𝑥𝑥, 𝑏𝑏𝑥𝑥 and 𝑐𝑐𝑥𝑥 are age-specific parameters, 𝑘𝑘𝑡𝑡 is a time-varying parameter, and 𝑓𝑓 is 
function of age and time with a parameter vector 𝜃⃗𝜃. 

In equation (1), 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡 is the basic Lee–Carter structure, which, in our modelling approach, 
captures the background mortality improvement. As in the original Lee–Carter model, the 
evolution of 𝑘𝑘𝑡𝑡 is captured by a random walk with drift:  

𝑘𝑘𝑡𝑡 = 𝑑𝑑 + 𝑘𝑘𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, (2) 

where 𝑑𝑑 is the drift term and {𝜀𝜀𝑡𝑡} is a sequence of independent and identically distributed 
normal random variables with a zero mean and a constant variance. We also use the original Lee–
Carter identifiability constraints, ∑𝑥𝑥1

𝑥𝑥=𝑥𝑥0 𝑏𝑏𝑥𝑥 = 1  and ∑𝑡𝑡1
𝑡𝑡=𝑡𝑡0 𝑘𝑘𝑡𝑡 = 0 , to ensure parameter 

uniqueness. 

On the other hand, 𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃) captures the heat wave. We set this function to the probability 
density function of a normal distribution:  

𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃) = 1
√2𝜋𝜋𝜎𝜎

exp �− ((𝑡𝑡−𝑡𝑡0)−(𝜇𝜇+(𝑥𝑥−𝑥𝑥0)ℎ))2

2𝜎𝜎2
�, (3) 

where 𝜃⃗𝜃 = (𝜇𝜇,𝜎𝜎,ℎ)′ is the vector of heat wave parameters that determine the location, size 
and pattern of the heat wave. Although other parametric functions may be used, we choose to 
use this particular function because it leads to improvement rates that are straightforward to 
interpret. 

For notational convenience, we let  

𝑔𝑔(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃) = �
𝑡𝑡

𝑗𝑗=𝑡𝑡0

𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃), 

which can be understood as the cumulative effect of the heat wave up to and including time 𝑡𝑡 >
𝑡𝑡0. In terms of 𝑔𝑔(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃), the heat wave model can be rewritten more compactly as  

ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡 + 𝑐𝑐𝑥𝑥𝑔𝑔(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃). (4) 
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3.2 Implied Mortality Improvement Rates 
The interpretation of the heat wave model becomes clearer when we consider the expected 
mortality improvement implied by the model. Switching off the random term in equation (2), the 
change in the log central death rate for age 𝑥𝑥 from year 𝑡𝑡 − 1 to 𝑡𝑡 is given by  

ln(𝑚𝑚𝑥𝑥,𝑡𝑡) − ln(𝑚𝑚𝑥𝑥,𝑡𝑡−1) = 𝑏𝑏𝑥𝑥𝑑𝑑 + 𝑐𝑐𝑥𝑥𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃) (5) 

= 𝑏𝑏𝑥𝑥𝑑𝑑 + 𝑐𝑐𝑥𝑥
1

√2𝜋𝜋𝜎𝜎
exp �− ((𝑡𝑡−𝑡𝑡0)−(𝜇𝜇+(𝑥𝑥−𝑥𝑥0)ℎ))2

2𝜎𝜎2
�, (6) 

for 𝑡𝑡 = 𝑡𝑡1 + 1, 𝑡𝑡1 + 2, …. 

It is clear that the first term ( 𝑏𝑏𝑥𝑥𝑑𝑑 ) in the above captures the long-term (background) 
improvement, which, by definition, depends on age (𝑥𝑥) but not time (𝑡𝑡). We conjecture that the 
long-term improvement rates for all ages are of the same sign. For this reason, we require 𝑏𝑏𝑥𝑥 >
0  for all 𝑥𝑥 = 𝑥𝑥0, … , 𝑥𝑥1 . 5  With this constraint, we anticipate that 𝑘𝑘𝑡𝑡  is downward sloping, 
which in turn means that 𝑑𝑑 is negative. 

The other term corresponds to the heat wave, which reduces asymptotically to zero as 𝑡𝑡 tends 
to infinity. Parameter 𝑐𝑐𝑥𝑥  allows the impact of the heat wave to be age dependent. In the 
extreme case when 𝑐𝑐𝑥𝑥 = 0, the mortality improvement at age 𝑥𝑥 is completely unaffected by 
the heat wave. As 𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃) is non-negative, we require 𝑐𝑐𝑥𝑥 < 0 for all 𝑥𝑥 = 𝑥𝑥0, … , 𝑥𝑥1 so that 
the heat wave absorbs excess mortality improvement (instead of deterioration). All of the three 
heat wave parameters (𝜇𝜇,𝜎𝜎,ℎ) are highly interpretable. 

First, 𝜎𝜎 controls the speed at which the heat wave tapers off. As the normal density becomes 
fairly close to zero (0.054) at two standard deviations above mean, we may regard 2 × 𝜎𝜎 as the 
approximate time for the improvement rates to converge from their peak values to their long-
term values (i.e., the convergence period). Of course, 𝜎𝜎 must be strictly positive. In addition, as 
the convergence period can neither be too short (say less than eight years) nor too long (say 
more than 60 years), we further require 4 < 𝜎𝜎 < 30. 

Second, 𝜇𝜇 determines the location of the heat wave. For age 𝑥𝑥0 (the lowest age in the age 
range under consideration), the peak of mortality occurs in year 𝑡𝑡0 + 𝜇𝜇. Given the patterns in 
typical mortality heat maps, this peak should be observed within the sample period of the data 
set, and for this reason we require 1 < 𝜇𝜇 < 𝑡𝑡1 − 𝑡𝑡0. More generally, for 𝑥𝑥 = 𝑥𝑥0, … , 𝑥𝑥1, the peak 
of the heat wave occurs in year 𝑡𝑡0 + 𝜇𝜇 + (𝑥𝑥 − 𝑥𝑥0)ℎ. 

Finally, ℎ reflects the mix between period and cohort effects in the heat wave. The meaning of 
ℎ is illustrated in figure 3. In one extreme when ℎ = 1, the centre of a heat wave increases by 
one year as age increases by one year. Consequently, the heat waves align perfectly diagonally, 
suggesting that the excess mortality improvement over the background rates is due entirely to 
cohort effects. In the other extreme when ℎ = 0, the centre of a heat wave does not change 
with age. Consequently, the heat waves align perfectly vertically, indicating that the excess 
mortality improvement over the background rates is an outcome of period effects only. 

                                                      
5 We cannot require 𝑏𝑏𝑥𝑥 < 0 for all 𝑥𝑥 = 𝑥𝑥0, … , 𝑥𝑥1, because of the identifiability constraint ∑𝑥𝑥1

𝑥𝑥=𝑥𝑥0 𝑏𝑏𝑥𝑥 = 1 used. 



11 

Figure 3: Illustrative patterns of the heat waves when 
ℎ = 1 (upper panel) and ℎ = 0 (lower panel).  
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ℎ = 0 
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In practice, instead of absolute changes in log death rates, scale factors are expressed in terms 
of relative (percentage) changes in death rates; that is,  

𝑅𝑅(𝑥𝑥, 𝑡𝑡) = 1 −
𝑚𝑚𝑥𝑥,𝑡𝑡

𝑚𝑚𝑥𝑥,𝑡𝑡−1
, 

𝑡𝑡 = 𝑡𝑡1 + 1, 𝑡𝑡1 + 2, …, where 𝑅𝑅(𝑥𝑥, 𝑡𝑡) stands for the mortality improvement scale factor for age 
𝑥𝑥 and calendar year 𝑡𝑡. It follows from equation (6) that  

𝑅𝑅(𝑥𝑥, 𝑡𝑡) = 1 − exp�𝑏𝑏𝑥𝑥𝑑𝑑 + 𝑐𝑐𝑥𝑥
1

√2𝜋𝜋𝜎𝜎
exp �− ((𝑡𝑡−𝑡𝑡0)−(𝜇𝜇+(𝑥𝑥−𝑥𝑥0)ℎ))2

2𝜎𝜎2
��, (7) 

𝑡𝑡 = 𝑡𝑡1 + 1, 𝑡𝑡1 + 2, …, under the heat wave model when the random innovations in equation (2) 
are switched off. This function can be implemented straightforwardly in spreadsheet programs 
and actuarial software. 

 

4 Estimation 
4.1 Estimation Method 
We now explain how the heat wave model may be estimated. 

First, we derive a likelihood function for estimating the parameters in equation (1). The likelihood 
function is based on a Poisson death count assumption. Let 𝐷𝐷𝑥𝑥,𝑡𝑡 be the observed number of 
death counts at age 𝑥𝑥 and year 𝑡𝑡, and 𝐸𝐸𝑥𝑥,𝑡𝑡 be the corresponding number of exposures.6 The 
likelihood function 𝑙𝑙 is obtained by assuming that 𝐷𝐷𝑥𝑥,𝑡𝑡 is a realization of a Poisson distribution 
with a mean of 𝐸𝐸𝑥𝑥,𝑡𝑡𝑚𝑚𝑥𝑥,𝑡𝑡, where 𝑚𝑚𝑥𝑥,𝑡𝑡 follows the specification in equation (1).  

Second, we use the barrier method to incorporate the inequality constraints: 

𝑏𝑏𝑥𝑥 > 0  and  𝑐𝑐𝑥𝑥 < 0, 𝑥𝑥 = 𝑥𝑥0, … , 𝑥𝑥1. 

In more detail, we subtract barrier functions for parameters 𝑏𝑏𝑥𝑥  and 𝑐𝑐𝑥𝑥  from the original 
likelihood function 𝑙𝑙, forming an objective function 𝑙𝑙(𝐵𝐵) which is maximized to obtain model 
parameter estimates. Each barrier function is created in such a way that it approaches positive 
infinity as its associated parameter approaches its boundary, thereby preventing the resulting 
parameter estimate from exceeding the boundary. 

Third, initial values for the optimization (maximization) process are chosen. We choose the initial 
values of 𝜇𝜇, ℎ, and 𝜎𝜎 by considering the patterns of historical mortality improvements. The 
initial values of other parameters (𝑐𝑐𝑥𝑥 , 𝑎𝑎𝑥𝑥 , 𝑏𝑏𝑥𝑥 , and 𝑘𝑘𝑡𝑡 ) are obtained by running a (partial) 
maximum likelihood estimation that is conditioned on the chosen initial values of 𝜇𝜇, ℎ, and 𝜎𝜎. 
Good initial values can stabilize and expedite the optimization process.  

Fourth, we maximize the objective function 𝑙𝑙(𝐵𝐵) using an interative Newton’s method, in which 
parameters are updated one at a time. At the end of each iteration (i.e., when all of the 
parameters in equation (1) are updated), the estimates of 𝑏𝑏𝑥𝑥 and 𝑘𝑘𝑡𝑡 are rescaled so that they 

                                                      
6 The observed value of 𝑚𝑚𝑥𝑥,𝑡𝑡 is the ratio of 𝐷𝐷𝑥𝑥,𝑡𝑡 to 𝐸𝐸𝑥𝑥,𝑡𝑡. 
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sum to 1 and 0, respectively.7 The iterations stop when the change in 𝑙𝑙(𝐵𝐵) is smaller than a pre-
specified tolerance level, say 10−6. 

Finally, given the estimates of 𝑘𝑘𝑡𝑡0 , … ,𝑘𝑘𝑡𝑡1, the drift term 𝑑𝑑 in equation (2) can be estimated 
readily. Using the method of conditional least squares, the best estimate of 𝑑𝑑 is simply (𝑘𝑘𝑡𝑡1 −
𝑘𝑘𝑡𝑡0)/(𝑡𝑡1 − 𝑡𝑡0 − 1). 

4.2 Estimation Results 
4.2.1 Parameter Estimates 

We fit the heat wave model to data from Canadian male population over a sample period of 
[𝑡𝑡0, 𝑡𝑡1] = [1950,2011] and a sample age range of [𝑥𝑥0, 𝑥𝑥1] = [60,89]. The estimates of 𝜇𝜇, 𝜎𝜎, 
and ℎ are 44.5238, 14.4002 and 0.7549, respectively. The estimate of ℎ indicates that the heat 
wave (i.e., the rapid mortality improvement observed in the past two decades) is an outcome of 
both cohort and period effects, with cohort effects being more influential (75% vs. 25%). The 
estimate of 𝜎𝜎  suggests that the convergence period (i.e., the period over which mortality 
improvement rates converge from their current values to their long-term values) is 
approximately 2 × 14.4002 ≈ 29 years. 

The estimates of the non-heat-wave parameters are presented in figure 4. Similar to the original 
Lee–Carter model, the estimate of 𝑎𝑎𝑥𝑥  increases fairly linearly with age. The estimates of 𝑐𝑐𝑥𝑥 
over the sample age range suggest that mortality improvement at younger ages tends to be more 
responsive to the heat wave. Based on the estimated values of 𝑘𝑘𝑡𝑡0 , … , 𝑘𝑘𝑡𝑡1, the estimate of the 
drift 𝑑𝑑 in equation (2) is −0.0471. 

  

                                                      
7 This step is taken as we use the original Lee–Carter identifiability constraints (∑𝑥𝑥1

𝑥𝑥=𝑥𝑥0 𝑏𝑏𝑥𝑥 = 1 and ∑𝑡𝑡1
𝑡𝑡=𝑡𝑡0 𝑘𝑘𝑡𝑡 = 0) 

to stipulate parameter uniqueness. 
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Figure 4: The estimates of 𝑎𝑎𝑥𝑥, 𝑏𝑏𝑥𝑥, 𝑐𝑐𝑥𝑥 and 𝑘𝑘𝑡𝑡 for 𝑥𝑥 = 60, … ,89 and 𝑡𝑡 = 1950, … ,2011. 

 
4.2.2 Goodness-of-fit 

We now analyze the goodness-of-fit of the heat wave model. As the heat wave model is 
developed from the original Lee–Carter model, in this analysis we use the Lee–Carter as the 
benchmark model. 

The maximized log-likelihood values for the heat wave model and the original Lee–Carter model 
are −10243.4  and −11386.0 , respectively. The difference in the log-likelihood values 
suggests that the heat wave model provides a better fit to the historical data. 

Noting that the heat wave model contains more parameters than the original Lee–Carter model, 
we also compare the two models in terms of the Bayesian Information Criterion (BIC; Schwarz, 
1978), which is defined as  

BIC = 𝑙𝑙 − 0.5 × 𝑛𝑛𝑝𝑝 × 𝑛𝑛𝑑𝑑 , (8) 

where 𝑙𝑙  denotes the maximized log-likelihood, 𝑛𝑛𝑝𝑝  represents the number of model 
parameters and 𝑛𝑛𝑑𝑑 = (𝑥𝑥1 − 𝑥𝑥0 + 1) × (𝑡𝑡1 − 𝑡𝑡0 + 1) is the number of data points used. The BIC 
includes a penalty for the use of model parameters: the larger the number of model parameters 
is, the larger the penalty is. Given how the BIC is defined, a model with a higher BIC value is 
preferred. The values of the BIC for the heat wave model and the original Lee–Carter model are 
−10819.3 and −11837.8, respectively. These BIC values suggest that the heat wave model 
outperforms the original Lee–Carter model even when the use of additional model parameters 
is taken into consideration. 
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Figure 5 compares the actual mortality improvement rates over the sample period with the fitted 
mortality improvement rates produced by the heat wave and the original Lee–Carter models. For 
the heat wave model, the fitted mortality improvement rates are calculated using equation (7) 
and the estimated model parameters. For the original Lee–Carter model, the fitted mortality 
improvement rates are calculated using the following formula and the estimated model 
parameters:  

𝑅𝑅(𝑥𝑥, 𝑡𝑡) = 1 − exp(𝑏𝑏𝑥𝑥𝑑𝑑). (9) 

It can be observed that compared to the original Lee–Carter model, the heat wave model can 
much more accurately capture the non-trivial pattern of the historical mortality improvement 
rates. 

Figure 5: The actual mortality improvement rates (left panel) and the fitted mortality 
improvement rates produced by the heat wave model (middle panel) and the original Lee–
Carter model (right panel) over the sample period of 1950 to 2011. 

   
 

 

4.2.3 Mortality Projections 

We now turn to mortality projections. The top two panels of figure 6 display the heat maps of 
the expected future mortality improvement rates implied by the heat wave model and the 
original Lee–Carter model, respectively. 8  To facilitate analyses, the historical mortality 
improvement rates are also included in the heat maps. 

The pattern of the expected future mortality improvement rates generated from the heat wave 
model appears to be a logical extension to that of the historical mortality improvement rates. 
Features including cohort effects (variation of colors across the diagonal dimension) are 
preserved. In contrast, as equation (9) implies, the original Lee–Carter model produces a 
projected heat map that shows no variation along both the horizontal and vertical dimensions. 

                                                      
8 For ease of exposition, the historical mortality improvement rates shown in the diagrams are pre-smoothed. It is 
important to note that the heat wave model and the Lee-Carter model are calibrated to raw data rather than pre-
smoothed data. 
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This overly simple pattern does not seem to be a reasonable extension to the pattern of the heat 
map of historical mortality improvement rates. 

In the lowest panel of figure 6 we show the heat map of the expected future mortality 
improvement rates specified in MI-2017. Compared to the heat wave model, MI-2017 produces 
less conservative mortality improvement rates in the short term (the warm colors observed in 
the heat map of historical mortality improvement rates are not found in the heat map produced 
by MI-2017), but the opposite is true in the long term. We remark that a smoother transition 
from historical to projected MI-2017 improvement rates is observed in the heat maps provided 
in the CIA (2017) report. The difference may be attributed to the fact that the smoothed 
improvement rates in those heat maps are produced by a different method (Whittaker-
Henderson graduation). 

Figure 6: The heat maps of the expected mortality improvement rates (2012 and onwards) 
implied by the heat wave model (upper panel), the original Lee–Carter model (middle panel), and 
MI-2017 (lower panel). The actual mortality improvement rates over the sample period are also 
shown. 
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Figure 7 compares the age-specific central rates of death projected by the heat wave model, the 
original Lee–Carter model and MI-2017. The original Lee–Carter model yields a purely linear 
projection, with a gradient that is not quite in line with the pace of reduction observed in the 
past two decades. Both the heat wave model and MI-2017 produce non-linear projections, but 
with different degrees of conservatism. The heat wave model implies more aggressive mortality 
improvement at the higher end of the age range, but the opposite is true in at the lower end. 
Also, in the (very) long run MI-2017 tends to yield lower projected mortality rates, as its ultimate 
scale factors are generally higher than the long-term improvement rates implied by the heat 
wave model. 

  



18 

Figure 7: Age-specific central rates of death (in log scale), 2012 and onwards, projected by the 
heat wave model, the original Lee–Carter model and MI-2017. 
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5 Comparison with Existing Stochastic Mortality Models 
In this section, we compare the heat wave model with several other existing stochastic mortality 
models that are widely used in the literature. These models include:  

• The original Cairns–Blake–Dowd model (aka Model M5; Cairns et al., 2006)  

ln�
𝑞𝑞𝑥𝑥,𝑡𝑡

1 − 𝑞𝑞𝑥𝑥,𝑡𝑡
� = 𝑘𝑘𝑡𝑡

(1) + 𝑘𝑘𝑡𝑡
(2)(𝑥𝑥 − 𝑥̅𝑥) 

• The Cairns–Blake–Dowd model with a quadratic age effect (aka Model M6; Cairns et al., 
2009)  

ln�
𝑞𝑞𝑥𝑥,𝑡𝑡

1 − 𝑞𝑞𝑥𝑥,𝑡𝑡
� = 𝑘𝑘𝑡𝑡

(1) + 𝑘𝑘𝑡𝑡
(2)(𝑥𝑥 − 𝑥̅𝑥) + 𝛾𝛾𝑐𝑐 

• The Cairns–Blake–Dowd model with a quadratic age effect and a cohort effect (aka 
Model M7; Cairns et al., 2009)  

ln�
𝑞𝑞𝑥𝑥,𝑡𝑡

1 − 𝑞𝑞𝑥𝑥,𝑡𝑡
� = 𝑘𝑘𝑡𝑡

(1) + 𝑘𝑘𝑡𝑡
(2)(𝑥𝑥 − 𝑥̅𝑥) + 𝑘𝑘𝑡𝑡

(3)((𝑥𝑥 − 𝑥̅𝑥)2 − 𝜎𝜎�𝑥𝑥2) + 𝛾𝛾𝑐𝑐 

• The Plat model (Plat, 2009)  

ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝑎𝑎𝑥𝑥 + 𝑘𝑘𝑡𝑡
(1) + 𝑘𝑘𝑡𝑡

(2)(𝑥̅𝑥 − 𝑥𝑥) + 𝑘𝑘𝑡𝑡
(3)(𝑥̅𝑥 − 𝑥𝑥)+ + 𝛾𝛾𝑐𝑐 

• The simplified Plat model (Plat, 2009)  

ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝑎𝑎𝑥𝑥 + 𝑘𝑘𝑡𝑡
(1) + 𝑘𝑘𝑡𝑡

(2)(𝑥̅𝑥 − 𝑥𝑥) + 𝛾𝛾𝑐𝑐 

In the above, 𝑞𝑞𝑥𝑥,𝑡𝑡 ≈ 1 − exp(−𝑚𝑚𝑥𝑥,𝑡𝑡) represents the conditional probability of death at age 𝑥𝑥 
and in year 𝑡𝑡 , 𝑎𝑎𝑥𝑥  is an age-specific parameter, 𝑘𝑘𝑡𝑡

(𝑖𝑖) , 𝑖𝑖 = 1,2,3 , is a stochastic factor that 
depends on time (𝑡𝑡), 𝛾𝛾𝑐𝑐 is a stochastic factor that depends on year of birth (𝑐𝑐 = 𝑡𝑡 − 𝑥𝑥), 𝑥̅𝑥 
represents the mean age over the sample age range, 𝜎𝜎�𝑥𝑥  is the mean of (𝑥𝑥 − 𝑥̅𝑥)2  over the 
sample age range, and (𝑥̅𝑥 − 𝑥𝑥)+ represents the minimum of (𝑥̅𝑥 − 𝑥𝑥) and zero. 

The models are fitted to the data for Canadian male population using the method of Poisson 
maximum likelihood. The identifiability constraints used are the same as those used in the 
original work of Cairns et al. (2009) and Plat (2009). We use a random walk with drift to model 
the evolution of 𝑘𝑘𝑡𝑡 over time, and an ARMA(1,1) process to model the evolution of 𝛾𝛾𝑐𝑐 over 
year of birth. 

Let us first compare the goodness-of-fit produced by the models. Table 2 reports the value of the 
BIC (defined in equation (8)) produced by each of the estimated models. Compared to the five 
alternative models, the heat wave model yields the highest (least negative) BIC value. The result 
suggests that the heat wave model outperforms not only the original Lee–Carter model but also 
five other commonly used stochastic mortality models in terms of goodness-of-fit, with the 
number of parameters taken into consideration.  
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Table 2: The values of the BIC produced by the heat wave model and five other stochastic 
mortality models fitted to the data from Canadian male population. 

Model  BIC 

The Cairns–Blake–Dowd model −11899  

The Cairns–Blake–Dowd model with a cohort effect  −11031  

The Cairns–Blake–Dowd model with quadratic age and cohort effects  −11157  

The Plat model  −11137  

The simplified Plat model  −10989  

The heat wave model  −10819  

We then examine the expected future mortality improvement rates implied by the five 
alternative models (figure 8). Model M5 suffers from the same problem as the original Lee–Carter 
model and Scale AA. It yields expected future mortality improvement rates that depend neither 
on time nor year of birth. This problem arises from the theoretical fact that under Model M5, the 
(expected) difference between ln(𝑞𝑞𝑥𝑥,𝑡𝑡/(1 − 𝑞𝑞𝑥𝑥,𝑡𝑡))  and ln(𝑞𝑞𝑥𝑥,𝑡𝑡−1/(1− 𝑞𝑞𝑥𝑥,𝑡𝑡−1))  does not 
depend on 𝑡𝑡. 

The other four models, all of which incorporate cohort effects, result in projected heat maps that 
exhibit some diagonal patterns. However, these diagonal patterns do not appear to be natural 
extensions of the patterns observed in the past. More importantly, these models do not fit into 
the framework of two-dimensional mortality improvement scales, in which short-term scale 
factors converge smoothly and gradually to the long-term scale factors.  
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Figure 8: The heat maps of the expected mortality improvement rates (2012 and onwards) 
implied by Model M5, Model M6, Model M7, the Plat model and the simplified Plat model. The 
actual mortality improvement rates over the sample period are also shown. 
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6 Measures of Uncertainty 
One important aspect about the heat wave model is that it is able to produce measures of 
uncertainty surrounding the expected future mortality improvement rates. This section outlines 
the derivation of such measures of uncertainty. 

As equation (5) indicates, under the heat wave model the expected change in the log central 
death rate at age 𝑥𝑥 between years 𝑡𝑡 − 1 and 𝑡𝑡 is  

𝑣𝑣(𝜃⃗𝜃∗) = 𝑏𝑏𝑥𝑥𝑑𝑑 + 𝑐𝑐𝑥𝑥𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃⃗𝜃), 

which is a function of a vector of six model parameters,  

𝜃⃗𝜃∗ = (𝑏𝑏𝑥𝑥, 𝑐𝑐𝑥𝑥, 𝜇𝜇,𝜎𝜎, ℎ,𝑑𝑑)′. 

Of course, the true values of these six parameters are never known. Because we can only evaluate 
𝑣𝑣 using the estimated values of the six model parameters, the calculated mortality improvement 
rates are subject to the uncertainty surrounding the estimates of the six model parameters. 

Let 𝜃⃗𝜃�∗  be the estimate of the vector of six model parameters. Using the multivariate delta 
method, the variance of 𝑣𝑣(𝜃⃗𝜃∗) can be approximated as a function of the information matrix of 
𝜃⃗𝜃∗ and the partial derivatives of 𝑣𝑣(𝜃⃗𝜃∗) with respect to 𝜃⃗𝜃∗. A high/low estimate of a mortality 
improvement rate (expressed in terms of the change in log central death rates) can be calculated 
as the best estimate of the mortality improvement rate plus/minus a multiple (say three) times 
the square root of the corresponding variance; that is,  

𝑣𝑣(𝜃⃗𝜃�∗) ± 3�Var(𝑣𝑣(𝜃⃗𝜃�∗)). 

Using the method described above, we obtain high/low estimates of future mortality 
improvement rates for Canadian males under the heat wave model. In figure 9 we show the 
projected paths of central death rates at various ages that are derived using the high/low 
estimates of the mortality improvement rates. The result presented in figure 9 gives an idea as 
to how high/low death rates may turn out to be in the future, and may also aid in setting margins 
for adverse deviation. 

  



23 

Figure 9: Age-specific central rates of death (in log scale), 2012 and onwards, projected using the 
central, high, and low estimates of mortality improvement rates implied by the 
heat wave model. 
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7 Conclusion 
In this paper, we introduce the heat wave model for modelling and projecting mortality. This new 
model is built on a unique view that overall mortality improvement is composed of ‘background 
improvements’ and ‘heat waves’. The former is captured by a simple Lee–Carter structure, 
whereas the latter is modeled by a parametric function that bears some similarity to a Fourier 
series. 

The construction of the heat wave model fits very well into the framework of two-dimensional 
mortality improvement scales, a mortality projection framework that has been promulgated 
recently by several actuarial organizations including the CIA for use in actuarial valuation. The 
heat wave model produces scale factors that extend logically from the historical mortality 
improvement rates, converging smoothly from higher short-term values to lower long-term 
(ultimate) values. As demonstrated in Section 5, none of the existing stochastic mortality models 
(including the Lee–Carter model, the Cairns–Blake–Dowd model and its variants, and two 
versions of the Plat model) considered in this paper can produce scale factors with such desirable 
properties. 

The heat wave model complements the current methods for deriving two-dimensional mortality 
improvement scales in two significant aspects. First, the heat wave model is entirely data-driven, 
requiring much fewer subjective judgments. Estimated from historical data, parameter 𝜎𝜎 
indicates the length of the convergence period, and parameters 𝑏𝑏𝑥𝑥  and 𝑑𝑑 inform the long-
term (ultimate) mortality improvement rate at each age. Second, rather than just a single best 
estimate, the heat wave model produces also a measure of uncertainty surrounding the best 
estimate. As illustrated in Section 6, with the heat wave model one can derive high/low scale 
factor estimates, which may be used for setting MfADs in practice. 

From a statistical viewpoint, the heat wave model also represents a significant improvement over 
many of the existing stochastic mortality models. Compared to six alternative models that are 
widely used in the literature, the heat wave model provides a significantly better fit to the data 
set under consideration, even when the number of model parameters is taken into account. 
Admittedly, the heat wave model is more challenging to estimate due to its inequality parameter 
constraints, but we have overcome the estimation challenge using the barrier method. 

Two limitations of the heat model are noted. First, compared to the Lee-Carter model, the 
estimation procedure for the heat wave model is admittedly more involved. Initial values have 
to be carefully chosen to expedite convergence, and barrier functions have to be specified to 
ensure the inequality contraints on some of the parameters. Second, given how the model is 
constructed, it is difficult to test its forecasting performance, particularly over a long forecast 
horizon. 

In future research, the heat wave model may be improved in a few directions. First, it would be 
interesting to investigate if functions other than the normal density function may better capture 
the heat wave and produce a more remarkable goodness-of-fit. Second, because some data sets 
may contain more than one heat wave, it is warranted to extend the current version of the heat 
wave model to incorporate multiple heat waves and to develop a procedure to determine the 
number of heat waves that should be incorporated. Finally, as the barrier method is not the only 
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optimization method that can handle inequality constraints, it would be useful to explore 
alternative methods for maximizing the log-likelihood functions of the heat wave model and its 
future variants. 
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