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Abstract  
We develop a claim score based on the bonus-malus approach proposed by Boucher and 
Inoussa (2014). We compare the fit and predictive ability of this new model with various 
models for panel count data. In particular, we study in more detail a new dynamic model based 
on the Harvey–Fernandes (HF) approach, which gives different weight to the claims according 
to their date of occurrence. We show that the HF model has serious shortcomings that limit its 
use in practice. In contrast, the bonus-malus model does not have these defects. Instead, it has 
several interesting properties: interpretability, computational advantages, and ease of use in 
practice. We believe that the flexibility of this new model means that it could be used in many 
other actuarial contexts. Based on a real database, we show that the proposed model 
generates the best fit and one of the best predictive capabilities among the other models 
tested. 

1. Introduction and Motivation 
In a recent paper, Boucher and Inoussa proposed a new approach to merit pricing for the 
number of claims in automobile insurance. Instead of assuming a random effect or a copula to 
model the dependence between all the contracts of a policyholder, the authors directly 
included a bonus-malus system (BMS) in the modelling. Consequently, all the past claims 
experience is summarized into a single numerical value: the current level of the BMS or what 
we call a claim score (similar to a credit score). Besides strengthening links between the theory 
and what is currently applied in practice for pricing, the proposed approach showed an 
interesting flexibility that can be used, for example, to include some legal constraints in the 
ratemaking. However, despite the advantages of the approach, the parameter estimation 
procedure proposed by Boucher and Inoussa (2014) is quite cumbersome and time-consuming. 

In this paper, we propose a straightforward but significant modification to this Bonus-Malus 
Systems Model for Panel Count Data (BMS-panel model). It changes the way the parameters 
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are estimated, drastically reducing both the complexity and the time of the calibration 
procedure. Taking advantage of this new flexibility of the model, we perform an exhaustive 
analysis of the model, where we do not set restriction on the size of the parameters space. In 
addition to showing some of the properties of the model, we compare the BMS-panel model 
with various panel data count models, including a new model that we introduce. We show that 
the fit of the BMS-panel model is the best among the considered distributions, and we analyze 
its prediction power. 

Because the BMS-panel model has a Markovian property that greatly facilitates its use, we 
believe that the bonus-malus approach could be an interesting option for modelling the 
complex structure of claim experience in actuarial sciences. For example, in situations where 
we want to model dependence between cars from the same contract, or when we want to link 
the frequency and the severity of claims, the claims score produced by the BMS model could be 
considered. This new paradigm could then replace complex approaches such as using a series of 
correlated random effects (see Abdallah et al., 2016) or a multiple hierarchical copula (see Shi 
et al., 2016). 

The paper is constructed as follows. In Section 2, we briefly present the main ratemaking 
approaches, where we introduce a new dynamic count distribution for panel data. In Section 3, 
we review the BMS-panel model, we introduce a simplified version, and we highlight some 
properties of the model. In Section 4, based on a database from a property and casualty 
insurance company, we calibrate and compare the proposed models. A very wide range of 
structural parameters of the BMS-panel model is tested. Finally, we conclude and present some 
promising generalizations in Section 5. 

2. Ratemaking Techniques 
We consider a property and casualty portfolio of 𝑀𝑀 policyholders observed over several years. 
For each contract 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑀𝑀, we define 𝑁𝑁𝑖𝑖,𝑡𝑡, a discrete random variable counting the 
number of claims for the policy period 𝑡𝑡 and 𝐗𝐗𝑖𝑖,𝑡𝑡 a column vector containing available 
explanatory factors at the beginning of period 𝑡𝑡. In this vector, we may include 𝑑𝑑𝑖𝑖,𝑡𝑡, a scalar 
measuring the risk exposure. Through this project, we assume that the primary purpose of a 
ratemaking (or pricing) model is to provide a prediction for  

E �𝑁𝑁𝑖𝑖,𝑇𝑇𝑖𝑖+1|𝑁𝑁𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑇𝑇𝑖𝑖���������
𝐍𝐍𝑖𝑖,𝑇𝑇𝑖𝑖

,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑇𝑇𝑖𝑖+1�, 

where all policyholders are independent and 𝑇𝑇𝑖𝑖 is the latest observed period for policyholder 
𝑖𝑖. Our main objective is to investigate the strengths and weaknesses of the following classes of 
models:   

• cross-section data models, for which independence is assumed between annual 
contracts for a policyholder (see Subsection 2.1);  

• panel data models, for which we suppose dependence between all contracts written 
with a policyholder (see Subsection 2.2); and  



• BMS-panel models, for which at least some of the past information is summarized using 
a BMS (see Section 3).  

2.1. Cross-section data models 
For cross-sectional models, we have independence between all policyholders as well as 
between all contracts, so we can write  

Pr�𝑁𝑁𝑖𝑖,𝑡𝑡+1 = 𝑛𝑛|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� = Pr�𝑁𝑁𝑖𝑖,𝑡𝑡+1 = 𝑛𝑛|𝐗𝐗𝑖𝑖,𝑡𝑡+1� 

and we can simplify our prediction problem in the following way:  

E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐗𝐗𝑖𝑖,𝑡𝑡+1� = 𝜆𝜆�𝐗𝐗𝑖𝑖,𝑡𝑡+1�, 

where 𝜆𝜆() is a function. Traditionally, in risk classification, we assume a log linear relationship 
between the mean parameter and the policyholder’s and/or claim’s characteristics such as sex, 
age, or marital status (see Denuit et al., 2007). 

The base model is usually the Poisson distribution, which is part of the exponential linear family 
and has useful and well-known statistical properties (see McCullagh and Nelder, 1989, or Frees 
et al., 2014). The probability mass function is Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛|𝐗𝐗𝑖𝑖,𝑡𝑡� = �𝜆𝜆𝑖𝑖,𝑡𝑡�

𝑛𝑛
exp�−𝜆𝜆𝑖𝑖,𝑡𝑡�/𝑛𝑛!, 𝑛𝑛 =

0,1,2, … and 0 elsewhere, where 𝜆𝜆𝑖𝑖,𝑡𝑡 = 𝑑𝑑𝑖𝑖,𝑡𝑡exp�𝐗𝐗𝑖𝑖,𝑡𝑡′𝜷𝜷� and 𝜷𝜷 is a column vector 
containing model parameters. Finally, we note  

𝜋𝜋𝑖𝑖,𝑡𝑡+1Poi = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐗𝐗𝑖𝑖,𝑡𝑡+1� = 𝜆𝜆𝑖𝑖,𝑡𝑡+1. 

This equation refers to an annual premium, when the cost of each claim is 1. Because this 
premium does not depend on the past claim experience, we usually call 𝜋𝜋𝑖𝑖,𝑡𝑡+1 an a priori 
premium. 

This Poisson distribution implies equidispersion, i.e., E�𝑁𝑁𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,𝑡𝑡� = Var�𝑁𝑁𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,𝑡𝑡� which is, 
usually, a too-strong assumption in non-life ratemaking. In an effort to overcome this issue, we 
consider the Negative Binomial (NB) distribution, which is one of the most commonly used 
alternatives to the Poisson model. To facilitate data analysis, we limit ourselves to the simplest 
forms of the NB distribution but, the reader can consult Winkelmann (2010). The most intuitive 
way to construct an NB distribution from a Poisson distribution is to introduce a random 
heterogeneity term in the mean parameter. Let Θ be a random variable following a gamma 
distribution, with probability density function 𝑓𝑓Θ(𝜃𝜃) = 𝛾𝛾𝛼𝛼𝜃𝜃𝛼𝛼−1exp(−𝜃𝜃𝜃𝜃)/Γ(𝛼𝛼) for 𝜃𝜃 > 0, 
with 𝛼𝛼 > 0 and 𝛾𝛾 > 0. We suppose that 𝛼𝛼 = 1/𝜏𝜏 and 𝛾𝛾 = 1/𝜏𝜏, meaning that E[Θ] = 1 
and Var[Θ] = 𝜏𝜏. We assume then that �𝑁𝑁𝑖𝑖,𝑡𝑡|Θ,𝐗𝐗𝑖𝑖,𝑡𝑡�~Poisson�𝜆𝜆𝑖𝑖,𝑡𝑡𝜃𝜃�. Therefore, the random 
variable �𝑁𝑁𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,𝑡𝑡� follows an NB distribution of type 2 (NB2) with parameters 𝜏𝜏 and 𝜆𝜆𝑖𝑖,𝑡𝑡 
and probability mass function given by  

Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛|𝐗𝐗𝑖𝑖,𝑡𝑡� =
Γ(𝑛𝑛 + 1/𝜏𝜏)

Γ(𝑛𝑛 + 1)Γ(1/𝜏𝜏)
�

𝜆𝜆𝑖𝑖,𝑡𝑡
1/𝜏𝜏 + 𝜆𝜆𝑖𝑖,𝑡𝑡

�
𝑛𝑛

�
1/𝜏𝜏

1/𝜏𝜏 + 𝜆𝜆𝑖𝑖,𝑡𝑡
�
1/𝜏𝜏

,        𝑛𝑛 = 0,1,2, … 

and 0 elsewhere. We can directly obtain E�𝑁𝑁𝑖𝑖,𝑡𝑡� = 𝜆𝜆𝑖𝑖,𝑡𝑡 and Var�𝑁𝑁𝑖𝑖,𝑡𝑡� = 𝜆𝜆𝑖𝑖,𝑡𝑡 + 𝜏𝜏𝜆𝜆𝑖𝑖,𝑡𝑡2 . 



We also consider a slightly different version of the NB distribution (NB1) with parameters 𝜆𝜆𝑖𝑖,𝑡𝑡 
and 𝜏𝜏 for which the probability mass function is  

Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛|𝐗𝐗𝑖𝑖,𝑡𝑡� =
Γ �𝑛𝑛 +

𝜆𝜆𝑖𝑖,𝑡𝑡
𝜏𝜏 �

Γ(𝑛𝑛 + 1)Γ�
𝜆𝜆𝑖𝑖,𝑡𝑡
𝜏𝜏 �

(1 + 𝜏𝜏)−𝜆𝜆𝑖𝑖,𝑡𝑡/𝜏𝜏 �1 +
1
𝜏𝜏
�
−𝑛𝑛

,        𝑛𝑛 = 0,1,2, … 

and 0 elsewhere. We observe that Var�𝑁𝑁𝑖𝑖,𝑡𝑡� = 𝜆𝜆𝑖𝑖,𝑡𝑡 + 𝜏𝜏𝜆𝜆𝑖𝑖,𝑡𝑡 = 𝜙𝜙𝜆𝜆𝑖𝑖,𝑡𝑡, which corresponds to the 
variance function of the overdispersed Poisson in the generalized linear model framework. In all 
cases, parameters can be easily estimated using a maximum-likelihood procedure. 

The premium predicted by both the NB1 and NB2 model is  

𝜋𝜋𝑖𝑖,𝑡𝑡+1NB = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐗𝐗𝑖𝑖,𝑡𝑡+1� = 𝜆𝜆𝑖𝑖,𝑡𝑡+1, 

where independence between contracts of the same insured is still assumed. 

2.2. Panel data models 
Panel data models assume some dependence between all annual contracts belonging to a 
single policyholder. We need a model for the (conditional) random vector [𝐍𝐍𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡], 
𝑡𝑡 = 1,2, … in order to predict E�𝑁𝑁𝑖𝑖,𝑇𝑇𝑖𝑖+1|𝐍𝐍𝑖𝑖,𝑇𝑇𝑖𝑖 ,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑇𝑇𝑖𝑖+1�. There are plenty of models for 
the time dependence between random variables – e.g., conditional models, marginal models, 
and subject-specific models – but it has been shown that random effects models were the best 
suited for non-life insurance data (see Boucher and Guillén, 2009). In a ratemaking model, an 
individual random effect may capture variability caused by the lack of information on some 
important classification variables such as road rage and drug use. Let Θ denote this random 
effect. Conditionally on Θ, all contracts of the same insured are supposed independent. The 
joint probability mass function is defined by  

Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� 

= �
∞

−∞
Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝜃𝜃𝑖𝑖 ,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� 𝑑𝑑𝑑𝑑(𝜃𝜃𝑖𝑖|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡), 

= �
∞

−∞
��

𝑡𝑡

𝑘𝑘=1

Pr�𝑁𝑁𝑖𝑖,𝑘𝑘 = 𝑛𝑛𝑖𝑖,𝑘𝑘|𝜃𝜃𝑖𝑖,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡��  𝑑𝑑𝑑𝑑(𝜃𝜃𝑖𝑖). 

where 𝐺𝐺(𝜃𝜃𝑖𝑖) is the cumulative distribution function of the random effect. We assume that the 
distribution of the random effect 𝜃𝜃𝑖𝑖  does not depend on covariates 𝐗𝐗; see Boucher and 
Denuit (2006) for a discussion about this conventional assumption in actuarial science. Finally, 
note that the joint distribution can also be expressed as the product of all predictive 
distributions of each insurance contract for insured 𝑖𝑖:  

Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� 

= Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1|𝐗𝐗𝑖𝑖,1�Pr�𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,2|𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,1,𝐗𝐗𝑖𝑖,1,𝐗𝐗𝑖𝑖,2� 

    × ⋯× Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑡𝑡−1 = 𝑛𝑛𝑖𝑖,𝑡𝑡−1,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡�. 



2.2.1. Negative Multinomial 

Following the construction of the NB2, the simplest random effects model is given by  

�𝑁𝑁𝑖𝑖,𝑡𝑡|Θ𝑖𝑖 = 𝜃𝜃𝑖𝑖 ,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡�~Poisson�𝜃𝜃𝑖𝑖𝜆𝜆𝑖𝑖,𝑡𝑡� 

and Θ𝑖𝑖~amma (𝛼𝛼 = 𝜅𝜅, 𝛾𝛾 = 𝜅𝜅), which lead to 

Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛|𝐗𝐗𝑖𝑖,1� =
Γ(𝑛𝑛 + 𝜅𝜅)

Γ(𝑛𝑛 + 1)Γ(𝜅𝜅)
�

𝜆𝜆𝑖𝑖,1
𝜅𝜅 + 𝜆𝜆𝑖𝑖,1

�
𝑛𝑛

�
𝜅𝜅

𝜅𝜅 + 𝜆𝜆𝑖𝑖,1
�
𝜅𝜅

 

Pr�𝑁𝑁𝑖𝑖,𝑡𝑡+1 = 𝑛𝑛|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� =
Γ(𝑛𝑛 + 𝛼𝛼)

Γ(𝑛𝑛 + 1)Γ(𝛼𝛼)
�

𝜆𝜆𝑖𝑖,𝑡𝑡+1
𝛾𝛾 + 𝜆𝜆𝑖𝑖,𝑡𝑡+1

�
𝑛𝑛

�
𝛾𝛾

𝛾𝛾 + 𝜆𝜆𝑖𝑖,𝑡𝑡+1
�
𝛼𝛼

, 

with 𝛼𝛼 = 𝜅𝜅 + ∑𝑡𝑡
𝑘𝑘=1 𝑛𝑛𝑖𝑖,𝑘𝑘, 𝛾𝛾 = 𝜅𝜅 + ∑𝑡𝑡

𝑘𝑘=1 𝜆𝜆𝑖𝑖,𝑘𝑘, and 𝜆𝜆𝑖𝑖,𝑘𝑘 = 𝑑𝑑𝑖𝑖,𝑘𝑘exp�𝐗𝐗𝑖𝑖,𝑘𝑘′𝜷𝜷�. Both probability 
distributions have a NB2 form (for all 𝑡𝑡), and then can be simply noted as NB2𝑖𝑖,𝑡𝑡(𝜆𝜆𝑖𝑖,𝑡𝑡,𝛼𝛼, 𝛾𝛾). 

The predictive distribution comes from the classical credibility theory (see Bühlmann and Gisler, 
2005), where the a posteriori distribution of the heterogeneity term Θ𝑖𝑖  is a Gamma 
distribution with updated parameters 𝜅𝜅 + ∑𝑡𝑡

𝑘𝑘=1 𝑛𝑛𝑖𝑖,𝑘𝑘 and 𝜅𝜅 + ∑𝑡𝑡
𝑘𝑘=1 𝜆𝜆𝑖𝑖,𝑘𝑘. The joint distribution, 

called Multivariate NB distribution (MVNB), or Negative Multinomial, is often applied in non-life 
insurance. Again, parameters can be estimated using a maximum-likelihood method. Therefore, 
the requested prediction is  

𝜋𝜋𝑖𝑖,1MVNB = E�𝑁𝑁𝑖𝑖,1|𝐗𝐗𝑖𝑖,1� = 𝜆𝜆𝑖𝑖,1 �
𝜅𝜅
𝜅𝜅
� = 𝜆𝜆𝑖𝑖,1 

𝜋𝜋𝑖𝑖,𝑡𝑡+1MVNB = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� = 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �
𝜅𝜅 + ∑𝑡𝑡

𝑘𝑘=1 𝑛𝑛𝑖𝑖,𝑘𝑘
𝜅𝜅 + ∑𝑡𝑡

𝑘𝑘=1 𝜆𝜆𝑖𝑖,𝑘𝑘
�. 

Given that each insurance contract of the same policyholder has the same random effects, 𝑁𝑁𝑖𝑖,𝑗𝑗 
and 𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗 are dependent:  

Cov�𝑁𝑁𝑖𝑖,𝑡𝑡,𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+𝑗𝑗� = 𝜆𝜆𝑖𝑖,𝑡𝑡𝜆𝜆𝑖𝑖,𝑡𝑡+𝑗𝑗(1/𝜅𝜅),        𝑗𝑗 > 0. 

2.2.2. NB with random effects 

As pointed out by Boucher et al. (2008), the NB with random effects Beta is well suited to 
model the number of claims, resulting in what we call a NBBeta distribution. From the 
probability mass function of the NB2 distribution, we assume that (1/𝜏𝜏)/(𝜆𝜆 +
1/𝜏𝜏)~Beta(𝑎𝑎, 𝑏𝑏). Then, we have  

Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛|𝐗𝐗𝑖𝑖,1� =
Γ(𝑎𝑎 + 𝑏𝑏)Γ(𝑎𝑎 + 𝜆𝜆𝑖𝑖,1)Γ(𝑏𝑏 + 𝑛𝑛)
Γ(𝑎𝑎)Γ(𝑏𝑏)Γ(𝑎𝑎 + 𝑏𝑏 + 𝜆𝜆𝑖𝑖,1 + 𝑛𝑛)

Γ(𝜆𝜆𝑖𝑖,1 + 𝑛𝑛)
Γ(𝜆𝜆𝑖𝑖,1)Γ(𝑛𝑛 + 1)

 

Pr�𝑁𝑁𝑖𝑖,𝑡𝑡+1 = 𝑛𝑛|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� =
Γ(𝛼𝛼 + 𝛾𝛾)Γ(𝛼𝛼 + 𝜆𝜆𝑖𝑖,𝑡𝑡+1)Γ(𝛾𝛾 + 𝑛𝑛)
Γ(𝛼𝛼)Γ(𝛾𝛾)Γ(𝛼𝛼 + 𝛾𝛾 + 𝜆𝜆𝑖𝑖,𝑡𝑡+1 + 𝑛𝑛)

Γ(𝜆𝜆𝑖𝑖,𝑡𝑡+1 + 𝑛𝑛)
Γ(𝜆𝜆𝑖𝑖,𝑡𝑡+1)Γ(𝑛𝑛 + 1)

 

 

with 𝛼𝛼 = 𝑎𝑎 + ∑𝑡𝑡
𝑘𝑘=1 𝜆𝜆𝑖𝑖,𝑘𝑘, 𝛾𝛾 = 𝑏𝑏 + ∑𝑡𝑡

𝑘𝑘=1 𝑛𝑛𝑖𝑖,𝑘𝑘 and 𝜆𝜆𝑖𝑖,𝑘𝑘 = 𝑑𝑑𝑖𝑖,𝑘𝑘exp�𝐗𝐗𝑖𝑖,𝑘𝑘′𝜷𝜷�. Both probability 
distributions have an NBBeta form (for all 𝑡𝑡), and then can be simply noted as 



NBB𝑖𝑖,𝑡𝑡(𝜆𝜆𝑖𝑖,𝑡𝑡,𝛼𝛼, 𝛾𝛾).  

We can easily show that E�𝑁𝑁𝑖𝑖,𝑡𝑡� = 𝜆𝜆𝑖𝑖,𝑡𝑡(𝑏𝑏/(𝑎𝑎 − 1)), and  

Var�𝑁𝑁𝑖𝑖,𝑡𝑡� = 𝜆𝜆𝑖𝑖,𝑡𝑡
(𝑎𝑎 + 𝑏𝑏 − 1)𝑏𝑏

(𝑎𝑎 − 1)(𝑎𝑎 − 2)
+ 𝜆𝜆𝑖𝑖,𝑡𝑡2 �

(𝑏𝑏 + 1)𝑏𝑏
(𝑎𝑎 − 1)(𝑎𝑎 − 2)

−
𝑏𝑏2

(𝑎𝑎 − 1)2
� 

and derive the a posteriori distribution of the random effects, which is a Beta distribution with 
updated parameters ∑𝑡𝑡 𝜆𝜆𝑖𝑖,𝑡𝑡 + 𝑎𝑎 and ∑𝑡𝑡 𝑛𝑛𝑖𝑖,𝑡𝑡 + 𝑏𝑏. Thus, we have  

𝜋𝜋𝑖𝑖,1NBB = E�𝑁𝑁𝑖𝑖,1|𝐗𝐗𝑖𝑖,1� = 𝜆𝜆𝑖𝑖,1 �
𝑏𝑏

𝑎𝑎 − 1
� 

𝜋𝜋𝑖𝑖,𝑡𝑡+1NBB = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� = 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �
𝑏𝑏 + ∑𝑡𝑡

𝑘𝑘=1 𝑛𝑛𝑖𝑖,𝑘𝑘
𝑎𝑎 + ∑𝑡𝑡

𝑘𝑘=1 𝜆𝜆𝑖𝑖,𝑘𝑘 − 1
�. 

Finally, as for the MVNB, the covariance between the number of claims of annual contracts of 
the same insured can be shown to be equal to:  

Cov�𝑁𝑁𝑖𝑖,𝑡𝑡,𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+𝑗𝑗� = 𝜆𝜆𝑖𝑖,𝑡𝑡𝜆𝜆𝑖𝑖,𝑡𝑡+𝑗𝑗 �
𝑏𝑏

𝑎𝑎 − 1
� �
𝑏𝑏 + 1
𝑎𝑎 − 2

−
𝑏𝑏

𝑎𝑎 − 1
� ,        𝑗𝑗 > 0. 

Obviously, for random effects models, other choices than the MVNB or the NBBeta are possible 
to construct. 

2.3. Dynamic panel data models 
At this point, it is worth mentioning one major drawback of the use of a classic random effects 
model, such as the MVNB or the NBBeta. By analyzing the predictive premiums, one can see 
that all past claims have the same importance, i.e., the same weight, in predicting the future 
premium. This means that a 10-year-old claim is as important as a one-year-old one. In practice, 
it is generally accepted that this is not a realistic scenario: drivers evolve over time, and recent 
experience should have a greater impact than older experience when estimating a driver’s risk. 

Unfortunately, it is not easy to include such temporal dynamics in a panel data model. A 
random effects approach must assume a random process for Θ𝑖𝑖,𝑡𝑡. Thus, models where the 
random effects Θ𝑖𝑖,𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇𝑖𝑖 evolve over time would need a 𝑇𝑇-dimensional integral to 
express the joint distribution of all claims of a single policyholder. Therefore, complex 
numerical procedures or approximated inference methods are needed (see Jung and 
Liesenfeld, 2001, for example). Other approaches have been proposed to include a dynamic 
effect into count models: evolutionary credibility models in Albrecht (1985), Poisson residuals in 
Pinquet et al. (2001), or, more recently, copulas with the jittering method in Shi and Valdez 
(2016). 

In this paper, we consider the Harvey–Fernandes model, or HF model, proposed by Harvey and 
Fernades (1989) and introduced in actuarial science by Bolancé et al. (2007). Let ℋ𝑖𝑖,𝑡𝑡 denote 
the claim history up to time 𝑡𝑡 for contract 𝑖𝑖. This approach includes random effects that 
develop over time according to a two-step procedure:  

• P-step: the conditional distribution of the random effect Θ𝑖𝑖,𝑡𝑡|ℋ𝑖𝑖,𝑡𝑡 is predicted; and  



• U-Step: the distribution is updated according to some function 𝑈𝑈 and 
Θ𝑖𝑖,𝑡𝑡+1~𝑈𝑈(Θ𝑖𝑖,𝑡𝑡|ℋ𝑖𝑖,𝑡𝑡).  

If we select a conjugate distribution for the random effects (such as the gamma for the MVNB 
model, and the beta for the NBBeta model), Θ𝑖𝑖,𝑡𝑡 and Θ𝑖𝑖,𝑡𝑡|ℋ𝑖𝑖,𝑡𝑡  should be from the same 
distribution. Thus, the selected function 𝑈𝑈 can be directly applied to the parameters of the 
distribution of Θ𝑖𝑖,𝑡𝑡|ℋ𝑖𝑖, 𝑡𝑡 in order to obtain the distribution of Θ𝑖𝑖,𝑡𝑡+1 (U-step). Consistent with 
Bolancé et al. (2007), we follow this path and select a function 𝑈𝑈 where the parameters 𝛼𝛼𝑡𝑡, 
𝜏𝜏𝑡𝑡 of the posterior distribution Θ𝑖𝑖,𝑡𝑡|𝑁𝑁𝑖𝑖,𝑡𝑡 will be modified as 𝛼𝛼𝑡𝑡∗ = 𝜈𝜈𝛼𝛼𝑡𝑡 and 𝜏𝜏𝑡𝑡∗ = 𝜈𝜈𝜏𝜏𝑡𝑡 with 
starting values 𝛼𝛼0 and 𝜏𝜏0. From this structure we can derive the distribution of each 
Θ𝑖𝑖,1, … ,Θ𝑖𝑖,𝑡𝑡. 

Given that the joint distribution can be expressed as the product of predictive distributions, the 
following result can be shown (we remove 𝐗𝐗𝑖𝑖 for simplicity):  

Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡� = 

  Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1|𝛼𝛼𝑖𝑖,1, 𝛾𝛾𝑖𝑖,1�Pr�𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,2|𝛼𝛼𝑖𝑖,2, 𝛾𝛾𝑖𝑖,2� × … × Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝛼𝛼𝑖𝑖,𝑡𝑡, 𝛾𝛾𝑖𝑖,𝑡𝑡�, 

where only updated parameters are explicitly mentioned in each distribution:  

𝛼𝛼𝑖𝑖,𝑡𝑡 = (𝜈𝜈)𝑡𝑡−1𝛼𝛼0 + �
𝑡𝑡−1

𝑘𝑘=1

(𝜈𝜈)𝑘𝑘𝑛𝑛𝑖𝑖,𝑡𝑡−𝑘𝑘 

𝛾𝛾𝑖𝑖,𝑡𝑡 = (𝜈𝜈)𝑡𝑡−1𝛾𝛾0 + ∑𝑡𝑡−1
𝑘𝑘=1 (𝜈𝜈)𝑘𝑘𝜆𝜆𝑖𝑖,𝑡𝑡−𝑘𝑘. (1) 

Thus, in line with Bolancé et al. (2007), we can use a dynamic MVNB (noted HF-MVNB) by using 
the product of NB2𝑖𝑖,𝑡𝑡(𝜆𝜆𝑖𝑖,𝑡𝑡,𝛼𝛼𝑖𝑖,𝑡𝑡, 𝛾𝛾𝑖𝑖,𝑡𝑡) distributions for 𝑡𝑡 = 1, … ,𝑇𝑇𝑖𝑖. Similarly, we can construct a 
new dynamic distribution, based on the NBB distribution and then noted HF-NBB, as the 
product of NBB𝑖𝑖,𝑡𝑡(𝜆𝜆𝑖𝑖,𝑡𝑡,𝛼𝛼𝑖𝑖,𝑡𝑡, 𝛾𝛾𝑖𝑖,𝑡𝑡) distributions. We can see that both dynamic joint distribution 
put larger weight on recent claims in the predictive premium calculation:  

𝜋𝜋𝑖𝑖,𝑡𝑡+1HF−MVNB = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� 

= 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �
(𝜈𝜈)𝑡𝑡𝜅𝜅 + ∑𝑡𝑡

𝑘𝑘=1 (𝜈𝜈)𝑘𝑘𝑛𝑛𝑖𝑖,𝑡𝑡−𝑘𝑘+1
(𝜈𝜈)𝑡𝑡𝜅𝜅 + ∑𝑡𝑡

𝑘𝑘=1 (𝜈𝜈)𝑘𝑘𝜆𝜆𝑖𝑖,𝑡𝑡−𝑘𝑘+1
� 

 and  

𝜋𝜋𝑖𝑖,𝑡𝑡+1HF−NBB = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐍𝐍𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� 

= 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �
(𝜈𝜈)𝑡𝑡𝑏𝑏 + ∑𝑡𝑡

𝑘𝑘=1 (𝜈𝜈)𝑘𝑘𝑛𝑛𝑖𝑖,𝑡𝑡−𝑘𝑘+1
(𝜈𝜈)𝑡𝑡𝑎𝑎 + ∑𝑡𝑡

𝑘𝑘=1 (𝜈𝜈)𝑘𝑘𝜆𝜆𝑖𝑖,𝑡𝑡−𝑘𝑘+1 − 1
�. 

We discuss the covariance between the number of claims of annual contracts of the same 
policyholder in Section 4. 



3. BMS-Panel Models 
Bonus-malus systems have been introduced in ratemaking procedures for many practical 
reasons (see Lemaire, 1995, and Denuit et al., 2007). The basic idea underlying BMS models is 
to summarize past claims experience into a claim score: a discrete value going from 1 to 𝑠𝑠, 
where 1 represents the lowest risk and 𝑠𝑠 the highest. In practice, when a new policyholder 
enters the portfolio, the insurance company gives that individual a selected entry level as an 
initial claim score. Each year, depending on the insured’s claim experience, the policyholder will 
move into the bonus-malus scale: toward high values for frequent claims, toward lower values 
in the opposite case. 

Definition 3.1 (Bonus-Malus System): A bonus-malus system is a three-parameter model 
(𝛹𝛹, 𝑠𝑠, ℓ∗) where the level of the system at the beginning of period 𝑡𝑡 + 1 in the database is 
given by  

𝐿𝐿(𝑡𝑡 + 1) = min�max�𝐿𝐿(𝑡𝑡) − 𝕀𝕀�𝑁𝑁𝑖𝑖,𝑡𝑡 = 0� + Ψ𝑁𝑁𝑖𝑖,𝑡𝑡, 1�, 𝑠𝑠�, (2) 

where 𝕀𝕀�𝑁𝑁𝑖𝑖,𝑡𝑡 = 0� is a dummy variable indicating a period without claims, 𝑠𝑠 is the highest 
level of the system, and Ψ is the jump parameter. The parameter ℓ∗ corresponds to the 
entry level of the system for a policyholder without experience. This kind of structure of the 
BMS is commonly denoted by −1/+Ψ.  

Figure 1 presents an example of a BMS. 

Figure 1: Example of a BMS. At the beginning of the first period, the new policyholder i enters 
the system at level ℓ∗. If no accidents are filed during the first insurance contract, the 

policyholder moves from level ℓ∗ to level ℓ∗ − 1 at the beginning of the second period. For 
each claim, the policyholder’s BMS level increases by Ψ. 

 
  

Intuitively, by averaging the claims frequency for each claim score, the insurance company 
could then construct a form of merit rating, representing relativities for BMS (see, for example, 
Figure 5 of Boucher and Inoussa, 2014). However, we can improve the rating system by 
choosing other approaches than averaging the frequency of each claim score. An extensive 
body of literature deals with how to calibrate a BMS with cross-section insurance data (see 
Denuit et al., 2007, for an overview). However, when we observe many annual contracts for a 
single insured in a data set (i.e., panel data structure), Boucher and Inoussa (2014) presents a 
more suitable approach, where the authors construct what they call a BMS-panel model. 

 



3.1. BMS-panel model 
The main objective of the BMS-panel model is to estimate the parameters needed for the a 
priori and the a posteriori ratemaking simultaneously, by including the BMS structure directly in 
the modelling. In order to estimate parameters, we need a model for the conditional random 
vector [𝐍𝐍𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡]. First, let [𝑁𝑁𝑖𝑖,1,𝑁𝑁𝑖𝑖,2] be a random vector in a portfolio with a BMS as 
defined in Definition 3.1 and suppose that we know ℓ𝑖𝑖,1, the BMS level of insured 𝑖𝑖 at time 1. 
The conditional joint probability mass function is given by (we drop the dependence on 𝐗𝐗 to 
simplify the presentation)  

Pr(𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1,𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,2|𝐿𝐿(1) = ℓ𝑖𝑖,1) 

= Pr(𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1|𝐿𝐿(1) = ℓ𝑖𝑖,1)Pr(𝑁𝑁𝑖𝑖,2 = 𝑛𝑛 𝑖𝑖, 2|𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, 𝐿𝐿(1) = ℓ𝑖𝑖,1) 

= Pr(𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1|𝐿𝐿(1) = ℓ𝑖𝑖,1) 

    × ��
𝑠𝑠

𝑦𝑦=1

Pr�𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,2�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1,𝐿𝐿(1) = ℓ𝑖𝑖,1, 𝐿𝐿(2) = 𝑦𝑦� Pr�𝐿𝐿(2) = 𝑦𝑦�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1,𝐿𝐿(1) = ℓ𝑖𝑖,1��. 

Given the BMS, past information is captured by the last level reached by the system, we obtain 

= Pr(𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1|𝐿𝐿(1) = ℓ𝑖𝑖,1)��
𝑠𝑠

𝑦𝑦=1

Pr(𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,2|𝐿𝐿(2) = 𝑦𝑦)Pr(𝐿𝐿(2) = 𝑦𝑦|𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1,𝐿𝐿(1) = ℓ𝑖𝑖,1)� 

= Pr(𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1|𝐿𝐿(1) = ℓ𝑖𝑖,1)Pr(𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,2|𝐿𝐿(2) = ℓ𝑖𝑖,2), 

where Pr(𝐿𝐿(2) = 𝑦𝑦|𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, 𝐿𝐿(1) = ℓ𝑖𝑖,1) = 0 for all 𝑦𝑦, except for 𝑦𝑦 = ℓ𝑖𝑖,2, the level 
reached by the BMS at time 2 after 𝑛𝑛𝑖𝑖,1 claims were observed during the year. Consequently,  

Pr(𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1,𝑁𝑁𝑖𝑖,2 = 𝑛𝑛𝑖𝑖,2, … ,𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝐿𝐿(1) = ℓ𝑖𝑖,1) = ∏𝑡𝑡
𝑘𝑘=1 Pr(𝑁𝑁𝑖𝑖,𝑘𝑘 = 𝑛𝑛𝑖𝑖,𝑘𝑘|𝐿𝐿(𝑘𝑘) = ℓ𝑖𝑖,𝑘𝑘). (3) 

Several options are available to model the conditional distribution Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝐿𝐿(𝑡𝑡) = ℓ𝑖𝑖,𝑡𝑡�: 
we can consider the distributions introduced in subsections 2.1 or 2.2, as well as the hurdle or 
the zero-inflated distributions (see Boucher and Guillén, 2009, for an extensive overview of 
count distributions in ratemaking). For a selected distribution, the BMS level should be used to 
model the mean parameter of the conditional distribution. Based on the Poisson, the NB2 or 
the NB1 introduced earlier, we assume that the mean parameter will be modelled as  

𝜋𝜋𝑖𝑖,𝑡𝑡+1BMS = E�𝑁𝑁𝑖𝑖,𝑡𝑡+1|𝐍𝐍𝑖𝑖,𝑡𝑡+1,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡+1� = 𝜆𝜆𝑖𝑖,𝑡𝑡+1𝑟𝑟ℓ𝑖𝑖,𝑡𝑡+1 , 

where 𝜆𝜆𝑖𝑖,𝑡𝑡 is an a priori premium based on the characteristics of the insured (sex, age, etc.) for 
the period [𝑡𝑡, 𝑡𝑡 + 1). Several structures for 𝑟𝑟ℓ can be chosen, but we will restrict ourselves to 
studying linear relativities for the BMS, as defined below.  



Definition 3.2 (Linear Bonus-Malus System): A linear relativity is associated with each step of 
the scale according to the equation  

𝑟𝑟𝐿𝐿(𝑡𝑡) = 1 + 𝛿𝛿(𝐿𝐿(𝑡𝑡) − 1), (4) 

where 𝛿𝛿 is the penalty parameter.  

Equation (4) implies that 𝑟𝑟1 = 1 and defines the basis risk. These linear relativities, initially 
proposed by Gilde and Sundt (1989), prevent unwanted situations such as 𝑟𝑟𝑖𝑖 > 𝑟𝑟𝑗𝑗 for 𝑖𝑖 < 𝑗𝑗. 

3.2. Entry level 
The distributions previously mentioned were defined conditionally on the knowledge of the 
BMS level of insured 𝑖𝑖 at time 1. Consequently, the joint probability mass function of 
policyholder 𝑖𝑖 at time 𝑡𝑡 is given by  

Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� 

= �
𝑠𝑠

𝑦𝑦=1

Pr�𝑁𝑁𝑖𝑖,1 = 𝑛𝑛𝑖𝑖,1, … ,𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑛𝑛𝑖𝑖,𝑡𝑡|𝐿𝐿(1) = 𝑦𝑦,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡�Pr(𝐿𝐿(1) = 𝑦𝑦) 

= �
𝑠𝑠

𝑦𝑦=1

�
𝑡𝑡

𝑘𝑘=1

Pr(𝑁𝑁𝑖𝑖,𝑘𝑘 = 𝑛𝑛𝑖𝑖,𝑘𝑘|𝐿𝐿(𝑘𝑘) = ℓ𝑖𝑖,𝑘𝑘,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑘𝑘)Pr(𝐿𝐿(1) = 𝑦𝑦), 

where Pr(𝐿𝐿(1) = 𝑦𝑦) is the probability distribution of the BMS level at time 𝑡𝑡 = 1, i.e, the first 
year an insured appears in the database. One must not confuse the first year of driving with the 
first year an insured is observed in the database, as illustrated in Figure 2. 

Figure 2: Example of a policyholder with partial unknown information. In order to estimate ℓ∗, 
the insurer must complete the trajectory followed by the BMS between the first year of driving 

and the first year in the database. 

  
If we want to model the joint distribution for a new driver, ℓ𝑖𝑖,1 can be found directly: it is ℓ∗, 
the entry level selected in the construction of the model. Thus Pr(𝐿𝐿(1) = 𝑦𝑦) = 0 for all 𝑦𝑦, 
except 𝑦𝑦 = ℓ∗. For experienced drivers, this situation is more difficult to deal with. Insurers 
must be careful and should not suppose that all new insureds did not have claims in past years, 
nor must they automatically suppose that they should give policyholders an entry level ℓ∗. In 
Boucher and Inoussa (2014), the authors propose to recreate all the possible events of each 
policyholder from the first year of driving to the first year in the database, to create the 
distribution of 𝐿𝐿1. By taking the average of 𝐿𝐿1, they assigned each driver in the database a 
value of ℓ1. Although the method is intuitive, it is a very complex to implement, in addition to 



requiring a lot of time and IT resources. In this paper, we propose a much simpler method 
based on the fact that the probability of not filing an accident during a single year is very high, 
often in the range of 80–95%. 

Proposition 3.3: For a policyholder 𝑖𝑖, let 𝑆𝑆𝑖𝑖(𝑡𝑡) be the level reached by a (𝛹𝛹, 𝑠𝑠, ℓ∗) BMS after 
𝑡𝑡 periods from the first exposure year and 𝑢𝑢𝑖𝑖  be the first observed year in the portfolio. Thus, if  

Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 0|𝐿𝐿(𝑡𝑡) = ℓ𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� > 0.5,        ∀𝑡𝑡, (5) 

 then  

argmax
ℓ∈{1,…,𝑠𝑠}

�Pr�𝑆𝑆𝑖𝑖(1) = ℓ∗, … , 𝑆𝑆𝑖𝑖(𝑢𝑢𝑖𝑖 + 1) = ℓ|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡�� = max(ℓ∗ − 𝑢𝑢𝑖𝑖, 1). 

 Proof. Based on Equation (2), the transition probabilities are given by (for a policyholder with a 
claim frequency of 𝜆𝜆𝑖𝑖,𝑡𝑡 for the period 𝑡𝑡)  

𝑝𝑝𝑘𝑘,𝑗𝑗(𝜆𝜆𝑖𝑖,𝑡𝑡) = Pr�𝐿𝐿(𝑡𝑡 + 1) = 𝑗𝑗|𝐿𝐿(𝑡𝑡) = 𝑘𝑘,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� 

= Pr�min�max�𝑘𝑘 − 𝕀𝕀�𝑁𝑁𝑖𝑖,𝑡𝑡 = 0� + Ψ𝑁𝑁𝑖𝑖,𝑡𝑡, 1�, 𝑠𝑠� = 𝑗𝑗|𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡�, (6) 

for 𝑗𝑗 = 1, … , 𝑠𝑠 and 𝑘𝑘 = 1, … , 𝑠𝑠. This implies that 𝑝𝑝𝑘𝑘,max(𝑘𝑘−1,1)(𝜆𝜆𝑖𝑖,𝑡𝑡) > 0.5 and 𝑝𝑝𝑘𝑘,𝑗𝑗(𝜆𝜆𝑖𝑖,𝑡𝑡) <
0.5, 𝑗𝑗 ≠ max(𝑘𝑘 − 1,1) if Pr�𝑁𝑁𝑖𝑖,𝑡𝑡 = 0|𝐿𝐿(𝑡𝑡) = ℓ𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� > 0.5. Even if the insurance 
company does not know the policyholders’ characteristics before they enter the portfolio, it is 
reasonable to assume that they are such that Equation (5) is satisfied. Thus,  

𝑝𝑝ℓ∗,max(ℓ∗−1,1)(𝜆𝜆𝑖𝑖,1)𝑝𝑝max(ℓ∗−1,1),max(ℓ∗−2,1)(𝜆𝜆𝑖𝑖,2) × … × 𝑝𝑝max(ℓ∗−𝑢𝑢𝑖𝑖+1,1),max(ℓ∗−𝑢𝑢𝑖𝑖,1)(𝜆𝜆𝑖𝑖,𝑢𝑢𝑖𝑖) 

 is the most likely path from level ℓ∗ to level max(ℓ∗ − 𝑢𝑢𝑖𝑖 , 1). Finally,  

argmax
ℓ∈{1,…,𝑠𝑠}

�Pr(𝑆𝑆𝑖𝑖(1) = ℓ∗, … , 𝑆𝑆𝑖𝑖(𝑢𝑢𝑖𝑖 + 1) = ℓ)� = max(ℓ∗ − 𝑢𝑢𝑖𝑖 , 1). 

Figure 3: Example of a policyholder with partial unknown information (ui years are unknown 
and Ti years are known). 

  
  

Figure 3 illustrates the situation, and the new variables introduced. Based on the result of the 
last proposition, we then select the entry level of a new policyholder with 𝑢𝑢 years of 
experience as max(ℓ∗ − 𝑢𝑢, 1), or in other words Pr(𝐿𝐿(1) = 𝑦𝑦) = 0 for all 𝑦𝑦, except 𝑦𝑦 =
max(ℓ∗ − 𝑢𝑢, 1). Therefore, each year of driving experience results in a decrease of one level of 
the BMS, which is already one of the ways insurance companies deal with experienced drivers 



in merit rating plans. So, this way of selecting ℓ𝑖𝑖,1 not only simplifies the BMS-panel model, 
but it theoretically justifies the procedure already in use. 

3.3. Parameters 
The joint distribution of 𝑁𝑁𝑖𝑖,𝑇𝑇𝑖𝑖 is now completely defined for all insured in the database. We can 
thus summarize the steps needed to estimate all the parameters of the model. First, the 
actuary has to select, or estimate, the following structural components of the BMS-panel 
model:   

• the number of levels 𝑠𝑠 of the system;  

• the jump parameter Ψ for each claim;  

• the entry level ℓ∗ for a new driver;  

• the risk characteristics 𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑇𝑇𝑖𝑖 and the associated parameters 𝜷𝜷; and  

• the underlying count distribution.  

Then, for this specific BMS-panel model, 𝑁𝑁𝑖𝑖,𝑇𝑇𝑖𝑖, the a priori parameters (𝜷𝜷) linking the covariates 
with the expected value and the penalty parameter 𝛿𝛿 must be estimated by maximizing the 
likelihood function. When structural components of the BMS-panel model are selected, 
parameter estimation is direct and can be done using standard statistical software. Other 
parameters linked to the underlying count distribution should also be estimated. For example, 
if an NB1 or a NB2 distribution is used, an estimator of the overdispersion parameter 𝛼𝛼 should 
also be found. 

Note that for parameters 𝑠𝑠, Ψ and ℓ∗, the structure of the model provides us with some 
additional information that allows us to reduce the parameter space to a lattice. This is a well-
known problem in statistics; for example, see Hammersley (1950) for simple cases or Choirat 
and Raffaello (2012) for asymptotic properties. To obtain the best BMS-panel model, we adjust 
all combinations of 𝑠𝑠, Ψ and ℓ∗ and we select the model that generates the best likelihood 
profile and/or the best prediction capacity (based on out-of-sample analysis). 

3.4. Properties of the BMS-panel model 
Among the properties of the BMS-panel model, we are interested in evaluating the covariance 
between premiums paid by a policyholder for two periods. To do this, it is necessary to study 
the covariance between 𝑁𝑁𝑡𝑡 and 𝑁𝑁𝑡𝑡+𝑘𝑘, 𝑘𝑘 = 1,2, …, conditional to 𝐿𝐿(𝑡𝑡) = ℓ𝑡𝑡. 

For a BMS-panel model, the one-year probability of the random variable 𝐿𝐿 going from BMS 
level ℓ𝑖𝑖,𝑡𝑡 to BMS level ℓ𝑖𝑖,𝑡𝑡+1 is denoted by 𝑝𝑝ℓ𝑖𝑖,𝑡𝑡,ℓ𝑖𝑖,𝑡𝑡+1(𝜆𝜆𝑖𝑖,𝑡𝑡) as defined by equation (6). For a 
policyholder, we can construct a transition probability matrix  

𝐏𝐏(𝜆𝜆𝑖𝑖,𝑡𝑡) =

⎣
⎢
⎢
⎢
⎡
𝑝𝑝1,1(𝜆𝜆𝑖𝑖,𝑡𝑡) 𝑝𝑝1,2(𝜆𝜆𝑖𝑖,𝑡𝑡) ⋯ 𝑝𝑝1,𝑠𝑠(𝜆𝜆𝑖𝑖,𝑡𝑡)
𝑝𝑝2,1(𝜆𝜆𝑖𝑖,𝑡𝑡) 𝑝𝑝2,2(𝜆𝜆𝑖𝑖,𝑡𝑡) ⋯ 𝑝𝑝2,𝑠𝑠(𝜆𝜆𝑖𝑖,𝑡𝑡)
⋮ ⋮ ⋱ ⋮
𝑝𝑝𝑠𝑠,1(𝜆𝜆𝑖𝑖,𝑡𝑡) 𝑝𝑝𝑠𝑠,2(𝜆𝜆𝑖𝑖,𝑡𝑡) ⋯ 𝑝𝑝𝑠𝑠,𝑠𝑠(𝜆𝜆𝑖𝑖,𝑡𝑡)

⎦
⎥
⎥
⎥
⎤

. 



We can show that for all 𝐾𝐾 = 1,2, …, we have  

𝐏𝐏(𝐾𝐾)(𝜆𝜆𝑖𝑖,𝑡𝑡) = 𝐏𝐏𝐾𝐾(𝜆𝜆𝑖𝑖,𝑡𝑡), 

meaning that the transition probability matrix over 𝐾𝐾 time periods is simply the 𝐾𝐾th power 
of the annual transition probability matrix 𝐏𝐏(𝜆𝜆𝑖𝑖,𝑡𝑡). 

Proposition 3.4: In a BMS-panel model, at the beginning of a period 𝑡𝑡, the conditional 
covariance between 𝑁𝑁𝑖𝑖,𝑡𝑡 and 𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗, 𝑗𝑗 = 1,2, … is  

Cov�𝑁𝑁𝑖𝑖,𝑡𝑡,𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗|ℓ𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡� = 𝜆𝜆𝑖𝑖,𝑡𝑡+𝑗𝑗 

    × �
𝑠𝑠

𝑚𝑚=1

𝑟𝑟𝑚𝑚 �E �𝑁𝑁𝑖𝑖,𝑡𝑡𝑝𝑝min�max�ℓ𝑖𝑖,𝑡𝑡−𝕀𝕀(𝑁𝑁𝑖𝑖,𝑡𝑡=0)+Ψ𝑁𝑁𝑖𝑖,𝑡𝑡,1�,𝑠𝑠�,𝑚𝑚
(𝑗𝑗−1) �𝜆𝜆𝑖𝑖,𝑡𝑡�|ℓ𝑖𝑖,𝑡𝑡,𝐗𝐗𝑖𝑖,1, … ,𝐗𝐗𝑖𝑖,𝑡𝑡�

− 𝜆𝜆𝑖𝑖,𝑡𝑡𝑟𝑟ℓ𝑖𝑖,𝑡𝑡𝑝𝑝ℓ𝑖𝑖,𝑡𝑡,𝑚𝑚
(𝑗𝑗) �𝜆𝜆𝑖𝑖,𝑡𝑡��, 

where the transition probabilities are extracted from the transition matrices 𝐏𝐏(𝜆𝜆𝑖𝑖,𝑡𝑡)(𝑗𝑗) and 
𝐏𝐏(𝜆𝜆𝑖𝑖,𝑡𝑡)(𝑗𝑗−1) assuming that 𝐗𝐗𝑖𝑖,𝑡𝑡 = 𝐗𝐗𝑖𝑖,𝑡𝑡+1 = 𝐗𝐗𝑖𝑖,𝑡𝑡+2 = ⋯.  

Proof. We have (we drop the reference to 𝑖𝑖 and to 𝐗𝐗𝑖𝑖,1, …, 𝐗𝐗𝑖𝑖,𝑡𝑡 in order to ease the 
presentation)  

E[𝑁𝑁𝑡𝑡|ℓ𝑡𝑡] = 𝜆𝜆𝑡𝑡𝑟𝑟ℓ𝑡𝑡 

E�𝑁𝑁𝑡𝑡+𝑗𝑗|ℓ𝑡𝑡� = �
∞

𝑛𝑛=0

𝑛𝑛Pr�𝑁𝑁𝑡𝑡+𝑗𝑗 = 𝑛𝑛|ℓ𝑡𝑡� 

= �
∞

𝑚𝑚=0

�
∞

𝑛𝑛=0

𝑛𝑛Pr�𝑁𝑁𝑡𝑡+𝑗𝑗 = 𝑛𝑛|𝐿𝐿(𝑡𝑡 + 𝑗𝑗) = 𝑚𝑚, ℓ𝑡𝑡�Pr(𝐿𝐿(𝑡𝑡 + 𝑗𝑗) = 𝑚𝑚|ℓ𝑡𝑡). 

The inner sum is 

�
∞

𝑛𝑛=0

𝑛𝑛Pr�𝑁𝑁𝑡𝑡+𝑗𝑗 = 𝑛𝑛|𝐿𝐿(𝑡𝑡 + 𝑗𝑗) = 𝑚𝑚, ℓ𝑡𝑡� = �
∞

𝑛𝑛=0

𝑛𝑛Pr�𝑁𝑁𝑡𝑡+𝑗𝑗 = 𝑛𝑛|𝐿𝐿(𝑡𝑡 + 𝑗𝑗) = 𝑚𝑚� 

= E�𝑁𝑁𝑡𝑡+𝑗𝑗|𝐿𝐿(𝑡𝑡 + 𝑗𝑗) = 𝑚𝑚� 

= 𝜆𝜆𝑡𝑡+𝑗𝑗𝑟𝑟𝑚𝑚. 

 Thus,  

E�𝑁𝑁𝑡𝑡+𝑗𝑗|ℓ𝑡𝑡� = �
∞

𝑚𝑚=0

𝜆𝜆𝑡𝑡+𝑗𝑗𝑟𝑟𝑚𝑚Pr(𝐿𝐿(𝑡𝑡 + 𝑗𝑗) = 𝑚𝑚|ℓ𝑡𝑡) 

= �
∞

𝑚𝑚=0

𝜆𝜆𝑡𝑡+𝑗𝑗𝑟𝑟𝑚𝑚 �
∞

𝑞𝑞1=0

Pr(𝐿𝐿(𝑡𝑡 + 𝑗𝑗) = 𝑚𝑚|𝐿𝐿(𝑡𝑡 + 𝑗𝑗 − 1) = 𝑞𝑞1, ℓ𝑡𝑡)Pr(𝐿𝐿(𝑡𝑡 + 𝑗𝑗 − 1) = 𝑞𝑞1|ℓ𝑡𝑡) 

  



And, assuming that 𝐗𝐗i,t = 𝐗𝐗i,t+1 = 𝐗𝐗i,t+2 = ⋯, we have 

= 𝜆𝜆𝑡𝑡+𝑗𝑗 �
∞

𝑚𝑚=0

𝑟𝑟𝑚𝑚 �
∞

𝑞𝑞1=0

𝑝𝑝𝑞𝑞1,𝑚𝑚�𝜆𝜆𝑖𝑖,𝑡𝑡�Pr(𝐿𝐿(𝑡𝑡 + 𝑗𝑗 − 1) = 𝑞𝑞1|ℓ𝑡𝑡). 

Recursively, we obtain 

= 𝜆𝜆𝑡𝑡+𝑗𝑗 �
∞

𝑚𝑚=0

𝑟𝑟𝑚𝑚 �
∞

𝑞𝑞1=0

𝑝𝑝𝑞𝑞1,𝑚𝑚�𝜆𝜆𝑖𝑖,𝑡𝑡�⋯ �
∞

𝑞𝑞𝑗𝑗−1=0
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and the result follows directly from the definition of a covariance.  

For 𝑗𝑗 = 1, i.e., for two successive periods, the result of Proposition 3.4 simplifies to  
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𝑟𝑟𝑚𝑚𝑝𝑝ℓ𝑖𝑖,𝑡𝑡,𝑚𝑚(𝜆𝜆𝑖𝑖,𝑡𝑡), 

 with ℓ𝑖𝑖,𝑡𝑡+1 = ℓ𝑖𝑖,𝑡𝑡 − 𝕀𝕀(𝑛𝑛 = 0) + 𝑛𝑛Ψ. 

4. Empirical Illustrations 
We analyze a database from a portfolio of general liability insurance policies for private 
individuals from a major Canadian insurance company. Because bonus-malus systems are 
generally built for auto insurance products, we only consider the private use of vehicles in our 
project. The sample contains information about 429,333 contracts from 140,714 
policyholders, and runs from the year 2012 to 2016. The sample has the following 
properties:   

1. We only keep policyholders with a maximum of one insured car through all their 
observed contracts in order to avoid possible within-contract dependence;  

2. We only keep policyholders with complete coverages on all their observed contracts, to 
avoid censorship where some claims would not be covered or observed; and  

3. We remove from the database policyholders who use their car for commercial purposes, 
since they might exhibit different driving behaviours.  

These selection criteria might affect the results. For example, by choosing only insureds with 
one car, we might have a higher proportion of single insured than normally. However, the 
purpose of this study is not to explain the accident process by covariates, nor the claiming 
process, but only to present interesting count models that can be considered for ratemaking. To 
evaluate the performance of our models, we split the database into two components: a fitting 
set (98,589 policyholders) and a validation set (42,125 policyholders). Table 1 describes the 
eight covariates selected in the modelling. For every contract, we have initial information at the 
beginning of the period and we are interested in predicting the number of claims (excluding 
comprehensive claims). The average claim frequency is approximately 6.5% and we observe a 
maximum of five claims per contract. The distribution of the number of contracts observed per 
insured is shown in Table 2, for an average of 3.05 contracts per policyholder. 



Table 1: Dichotomous variables in the database. 

 Variable   Description 

𝑋𝑋1 = 1  The policyholder is female. 

𝑋𝑋2 = 1  The policyholder is married. 

𝑋𝑋3 = 1  The policyholder is less than 30 years old. 

𝑋𝑋4 = 1  The policyholder is between 30 and 50 years old. 

𝑋𝑋5 = 1  The distance driven per year is less than 10,000 km. 

𝑋𝑋6 = 1  The distance driven per year is between 10,000 km and 20,000 km. 

𝑋𝑋7 = 1  The distance driven per year is between 20,000 km and 30,000 km. 

𝑋𝑋8 = 1  The vehicle is used to commute. 

 

Table 2: Distribution of the number of contracts 

Number of year Percentage 

1  21.42%  

2  17.73%  

3  11.66%  

4  32.57%  

5  16.62%  

 

4.1. Count distributions 
We present, in Table 3, fitting results for various models. We observe that the Harvey–
Fernandes modification of both the MVNB and the NBBeta distribution did not improve the 
fitting, resulting in a value of 𝜈𝜈 = 1 for both models. We suppose that this is explained by the 
average of 3.05 contracts per policyholder, where the weight of past claims can still be 
supposed equal in the prediction of new claims. 



Table 3: Fitting results 

 Model  # parameters  Logl. AIC BIC 

Poisson  9  −85526,64 171071.28 171280.34 

NB2  10  −85238.04 170496.08 170728.37 

NB1  10  −85149.08 170318.16 170550.45 

MVNB  10  −84812.54 169645.08 169877.37 

NBBeta  11  −84727.13 169476.26 169731.78 

HF-MVNB  11  −84812.54 169647.08 169902.60 

HF-NBBeta  12  −84727.13 169478.26 169757.01 

MVNB ∗  10  −84611.88 169243.76 169476.05 

NBBeta ∗  11  −84426.63 168875.26 169130.78 

HF-MVNB ∗  11  −84460.82 168943.64 169199.16 

HF-NBBeta ∗  12  −𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖.𝟎𝟎𝟎𝟎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟖𝟖𝟖𝟖 

   

We can observe two results for each panel data count distribution (with and without  ∗). This 
can be explained by additional information in our database. Indeed, the province of Ontario 
uses Autoplus, a database that provides detailed automobile claims and policy history. Thus, it 
is possible for insurers to have access to the past claims history of a policyholder for up to 10 
years. In the construction of the database used for this project, we are then able to know the 
past 10 years of claim experience for each insured (before their first insurance contract 
observed in the database). However, only the claim experience for each insured is available, 
and the risk characteristics (𝐗𝐗) for those past 10 years are unknown. Because we will use this 
information in the BMS-panel model, we also tried to include this past experience in panel data 
models. Thus, we propose a slightly modified version of the MVNB model and the NBBeta 
model, which we name MVNB ∗ and NBBeta ∗. Specifically, we assume that the distribution of 
the random variable Θ𝑖𝑖  has already been adapted to account for past claims. Following a 
similar development to that described above, we could show that for a policyholder with 𝑚𝑚 
years of experience before entering the database, the distribution of Θ𝑖𝑖  for the first observed 
contract of an insured (gamma for the MVNB, beta for the NBBeta) will have the following 
parameters  

𝛼𝛼∗ = 𝛼𝛼 + �
𝑚𝑚𝑖𝑖

𝑗𝑗=1

𝑛𝑛𝑖𝑖,−𝑗𝑗∗     and    𝛾𝛾∗ = 𝛾𝛾 + �
𝑚𝑚𝑖𝑖

𝑗𝑗=1

𝜆𝜆𝑖𝑖,−𝑗𝑗, 

where 𝑚𝑚𝑖𝑖 is the minimum value between 10 and the driving experience (in years) for insured 
𝑖𝑖, and 𝑛𝑛𝑖𝑖,−𝑡𝑡∗  is the observed number of claim(s) 𝑡𝑡 year(s) before the entry of the policyholder 
into the database. Because we do not observe the 𝜆𝜆𝑖𝑖,−𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑖𝑖, we approximate them 
by 𝜆𝜆 = 6.5%, the average frequency of the database. 



Finally, the predicted premium for the MVNB ∗ can be shown to be equal to  

𝜋𝜋𝑖𝑖,𝑡𝑡+1MVNB∗ = 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �
∑𝑡𝑡
𝑘𝑘=1 𝑛𝑛𝑖𝑖,𝑘𝑘 + 𝛼𝛼∗

∑𝑡𝑡
𝑘𝑘=1 𝜆𝜆𝑖𝑖,𝑘𝑘 + 𝛾𝛾∗

� 

= 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �
∑𝑚𝑚𝑖𝑖
𝑗𝑗=1 𝑛𝑛𝑖𝑖,−𝑗𝑗

∗ +∑𝑡𝑡𝑘𝑘=1𝑛𝑛𝑖𝑖,𝑘𝑘+𝛼𝛼

𝑚𝑚𝑖𝑖𝜆𝜆+∑𝑡𝑡𝑘𝑘=1 𝜆𝜆𝑖𝑖,𝑘𝑘+𝛾𝛾
�, (7) 

where all the available claim experience can be used to estimate the future premium. The 
predicted premium for the NBBeta ∗ can also be computed straightforwardly. Note that 
modified Harvey–Fernandes approaches (HF-MVNB ∗ and HF-NBBeta ∗) can also be 
constructed using the same procedure, with 

𝛼𝛼𝑖𝑖,1∗ = (𝜈𝜈)𝑚𝑚𝑖𝑖𝛼𝛼0 + �
𝑚𝑚𝑖𝑖

𝑘𝑘=1

(𝜈𝜈)𝑘𝑘𝑛𝑛𝑖𝑖,−𝑘𝑘and𝛾𝛾𝑖𝑖,1∗ = (𝜈𝜈)𝑚𝑚𝑖𝑖𝛾𝛾0 + �
𝑚𝑚𝑖𝑖

𝑘𝑘=1

(𝜈𝜈)𝑘𝑘𝜆𝜆𝑖𝑖,−𝑘𝑘. 

When we include this new information, the HF-NBBeta ∗ outperforms all the other 
distributions in fitting statistics, even if we considerer penalized criteria such as the AIC or the 
BIC. We also use the out-of-sample data to compare the models. Table 4 shows the results 
where we compute two measures evaluating the prediction capacity of each model: the mean 
square error (MSE), and − because we are dealing with count data and not a continuous 
distribution − a loglikehood statistic from the Poisson distribution. Based on both out-of-
sample statistics, the HF-MVNB ∗ seems to offer a better prediction capacity.   

Table 4: Out-of-sample statistics. 

Model Logl. (Poisson) MSE 

Poisson −36966.48 10609.54 

NB2 −36860.55 10611.03 

NB1 −36815.96 10609.53 

MVNB −36731.55 10567.37 

NBBeta −36830.10 10601.31 

HF-MVNB −36731.55 10567.37 

HF-NBBeta −36830.10 10601.31 

MVNB ∗ −36588.47 10552.34 

NB-Beta ∗ −36628.14 10564.14 

HF-MVNB ∗ −𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟔𝟔𝟔𝟔 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟖𝟖𝟖𝟖 

HF-NBBeta ∗ −36628.04 10570.82 

   

 



4.2. BMS-panel models 
We adjust a BMS-panel model with Poisson, NB1, and NB2 underlying distributions. As we did 
for the previous models marked with  ∗, we also consider past claim experience from Autoplus. 
This 10-year history of past claims allows us to find ℓ1, the BMS level of each insured when 
they are observed in the database at the first time. We choose several combinations of 
structure parameters on a grid given by 𝑠𝑠 = 2,3, … , 𝑆𝑆, Ψ = 1,2, … , 𝑠𝑠 and ℓ∗ = 1, . . . , 𝑠𝑠, where 
𝑆𝑆 = 22 for the Poisson distribution, 𝑆𝑆 = 16 for the NB1 distribution and 𝑆𝑆 = 15 for the NB2 
distribution. These values of 𝑆𝑆 cover between 1,000 and 3,000 possibilities for each underlying 
distribution. Because each estimation step takes at least two to five minutes on a personal 
computer, covering all those possibilities is very time-consuming. We are looking for a 
procedure that could help us to narrow the space of {𝑠𝑠,Ψ, ℓ∗} to find the best combinations 
for a specific underlying distribution.   

Table 5: BMS-panel data statistics. 

Distribution # par. Ψ 𝑠𝑠 ℓ∗  Loglikelihood AIC BIC 

Poisson  13 6 11 1 −84672.04 169370.08 169508.07 

 13 6 11 2 −84672.63 169371.26 169509.25 

 13 6 10 1 −84673.27 169372.54 169510.53 

 13 6 10 2 −84673.89 169373.78 169511.77 

NB1  14 6 11 1 −𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖.𝟓𝟓𝟓𝟓 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟕𝟕𝟕𝟕 

 14 6 10 1 −84331.92 168691.84 168840.45 

 14 6 11 2 −84332.13 168692.27 168840.87 

 14 6 10 2 −84332.52 168693.05 168841.65 

NB2  14 6 11 1 −84442.99 168913.97 169062.58 

 14 6 11 2 −84443.56 168915.13 169063.73 

 14 6 10 1 −84444.49 168916.98 169065.58 

 14 6 10 2 −84445.09 168918.19 169066.79 

For each model, we estimate 𝜷𝜷, 𝛿𝛿, and an overdispersion parameter (for both NB 
distributions) using the estimation set. Finally, as we did for the other distributions, we 
calculate the value of the MSE, as well as the loglikelihood of a Poisson distribution for each 
fitted model based on the test sample, in both cases to prevent over-adjustment. In Table 5, we 
present the results of the four best BMS-panel models for all three underlying distributions, 
evaluated on the estimation dataset. We observe that the model −1/+6 with 𝑠𝑠 = 11 is the 
best model for the Poisson, the NB1, and the NB2. The four best models for each underlying 
distribution have the same structural parameters. Only the second-best model of the NB1 ranks 
third for the Poisson and the NB2. The value of 𝛿𝛿 does not seem to depend on the underlying 
distribution but rather depends on the three structural parameters 𝑠𝑠,Ψ and ℓ∗. Finally, we 



can see that the underlying distribution NB1 offers better fitting statistics than the NB2, 
reflecting what we already observed for cross-section data distributions. Formally, some 
statistical tests could be done to determine if the overdispersion parameter of the NB1 and the 
NB2 is statistically significant, but the huge differences between loglikelihoods already show 
that is the case. As done previously, we also compute out-of-sample statistics to assess the 
prediction capacity of BMS models. Table 6 presents the results.   

Table 6: Out-of-sample statistics for the BMS-panel model. 

Distribution 𝑠𝑠 Ψ ℓ∗ MSE Logl. (Poisson) 

Poisson 11 6 1 10550.35 −36587.65 

 11 6 2 10550.41 −36587.94 

 10 6 1 10549.90 −36586.96 

 10 6 2 10549.91 −36587.22 

NB1 11 6 1 10550.41 −36587.57 

 10 6 1 10549.93 −36586.85 

 11 6 2 10550.42 −36587.80 

 10 6 2 10549.95 −36587.11 

NB2 11 6 1 10552.06 −36586.44 

 11 6 2 10552.14 −36586.74 

 10 6 1 10551.54 −36585.73 

 10 6 2 10551.61 −36586.04 

The best model selected by the estimation dataset is the NB1, −1/+6 with 𝑠𝑠 = 11 and ℓ∗ =
1. Out-of-sample statistics show that this model has an interesting predictive capacity, only 
outperformed by the HF-MVNB ∗. We also see that the BMS-panel data model makes stable 
predictions, whereas the 15 other BMS-panel models selected show similar out-of-sample 
statistics (the greatest difference is less than 0.005%). 

Finally, because the best model selected by the data is the NB1, −1/+6 with 𝑠𝑠 = 11 and 
ℓ∗ = 1, we point out that   

• a policyholder reaches the top of the BMS after two claims in three years, resulting in an 
annual premium 2.2 times higher than the premium of a policyholder located at level 1;  

• after one claim, it takes six years for an insured revert to their initial position; and  

• new drivers are assigned an entry level of 1, the best of the BMS. This result highly 
depends on the data used, but is in total opposition to what Boucher and Inoussa (2014) 
obtained. Indeed, these authors concluded that new drivers should be assigned to the 
worst BMS scale.  



4.3. Parameters analysis 
Table 7 presents estimated values and standard errors for all 𝛽𝛽 parameters, for some of the 
best models namely the NB1 and the HF-NBB models, and the BMS-NB1 model with 𝑠𝑠 = 11, 
ℓ∗ = 1, and Ψ = 6. For the latter, we do not consider the variability of the structural 
parameters 𝑠𝑠, ℓ∗, and Ψ in the analysis. As already noticed by Boucher and Inoussa (2014), it 
is interesting to note the difference between the 𝛽̂𝛽, particularly when comparing cross-section 
data models (such as the NB1) and the other two models that allow for merit rating. Estimated 
parameters 𝛽𝛽5�, 𝛽𝛽6� and 𝛽𝛽7�, associated with the distance driven, show the largest difference 
between models. Smaller differences between those 𝛽̂𝛽 can be observed between the HF-
NBBeta model and the BMS-NB1 model. It means that the form of the premium penalties for 
claiming has an impact on the a priori rating. 

Table 7: Estimated 𝛽𝛽 (std.err.) parameters for specified models  

   NB1   HF-NBB   BMS-NB1  

Parameters  Est. Std. err. Est. Std. err. Est. Std. err. 

𝛽𝛽0� −2.103 (0.036) 1.527 (0.106) −2.356 (0.031) 

𝛽𝛽1� 0.037 (0.010) 0.037 (0.015) 0.031 (0.013) 

𝛽𝛽2� −0.026 (0.014) −0.036 (0.015) −0.031 (0.014) 

𝛽𝛽3� 0.424 (0.018) 0.417 (0.019) 0.403 (0.018) 

𝛽𝛽4� 0.345 (0.015) 0.323 (0.016) 0.309 (0.016) 

𝛽𝛽5� −0.579 (0.041) −0.497 (0.071) −0.481 (0.028) 

𝛽𝛽6� 0.453 (0.042) −0.397 (0.070) −0.385 (0.032) 

𝛽𝛽7� −0.245 (0.050) −0.222 (0.074) −0.216 (0.039) 

𝛽𝛽8� 0.029 (0.013) 0.047 (0.016) 0.035 (0.016) 

 

  



4.4. Predictive and covariance analysis 
Table 8: Estimated parameters for specified models 

Models Parameter Estimation Std. Err 

NB1 𝜏𝜏 0.067 (0.004) 

HF-NBB 𝑎𝑎 264.818 (12.881) 

 𝑏𝑏 5.500 (0.471) 

 𝜈𝜈 0.900 (0.008) 

BMS-NB1 𝜏𝜏 0.062 (0.003) 

 𝛿𝛿 0.120 (0.004) 

   

Table 8 shows the other estimated parameters for the same models. For the NB1 distribution, 
the value of 𝜏𝜏 mainly measures the overdispersion of the count distribution and does not 
model the dependence between number of claims. Indeed, the cross-section models suppose 
independence between all contracts and a null covariance between 𝑁𝑁𝑖𝑖,𝑡𝑡 and 𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗. This 
means that no merit rating is possible for this class of models. By comparison, for the more 
classic panel data models, such as the MVNB or the NBBeta, we established that the covariance 
between 𝑁𝑁𝑖𝑖,𝑡𝑡 and 𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗 is constant and does not depend on 𝑗𝑗. This results in the fact that 
the age of a claim is not being considered in the merit rating plan scheme. 

The HF-NBB models, generalized quite directly by something similar to a Kalman filter 
approach, were designed to allow different weights depending on the age of the claim. An 
analytic solution to compute the covariance is too complex, so we simply simulate the values. 
Figure 4 shows two graphs for the covariance between the number of claims. The one on the 
left-hand side shows Cov�𝑁𝑁𝑖𝑖,𝑡𝑡,𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗� for 𝑡𝑡 = 1, … ,10 for lag 𝑗𝑗 = 1, … ,15, while the other 
shows Cov�𝑁𝑁𝑖𝑖,𝑡𝑡−𝑗𝑗 ,𝑁𝑁𝑖𝑖,𝑡𝑡� for 𝑡𝑡 = 15 and for lag 𝑗𝑗 = 1, … ,14.  

Figure 4: Covariances of the HF models with Cov�𝑁𝑁𝑖𝑖,𝑡𝑡,𝑁𝑁𝑖𝑖,𝑡𝑡+𝑗𝑗� on the left-hand side and 
Cov�𝑁𝑁𝑖𝑖,15−𝑗𝑗,𝑁𝑁𝑖𝑖,15� on the right. 

 



Analysis of the graphs indicates, for example, that the number of claims observed in the first 
contract of insured 𝑖𝑖 will have the same impact on all future contracts. However, the 
covariance between claim counts will grow as 𝑡𝑡 becomes larger. Therefore, the following 
relation holds:  

Cov�𝑁𝑁𝑖𝑖,𝑡𝑡1 ,𝑁𝑁𝑖𝑖,𝑡𝑡1+𝑗𝑗� ≤ Cov�𝑁𝑁𝑖𝑖,𝑡𝑡2 ,𝑁𝑁𝑖𝑖,𝑡𝑡2+𝑗𝑗�, for𝑡𝑡1 < 𝑡𝑡2. 

The HF model was constructed to give unequal weight on the predictive premium depending on 
the age of the claim. Now, we see that the model does not give less weight to older claims, but 
gives more and more weight to newer claims. This pattern can be seen more clearly by the 
following proposition. 

Proposition 4.1: Based on an insured who has never claimed, the premium increase resulting 
from a claim will be higher if the insured has a long driving experience. In addition, the greater 
the driving experience of an insured, the greater the impact of a claim on the following year’s 
premium.  

Proof. First, based on the HF-NBBeta model, let us compute the premium at time 𝑡𝑡 + 1 for an 
insured who did not report at all: 

𝜋𝜋𝑖𝑖,𝑡𝑡+1 = 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �
𝜈𝜈𝑡𝑡𝑏𝑏

(𝜈𝜈)𝑡𝑡𝑎𝑎 + ∑𝑡𝑡
𝑘𝑘=1 (𝜈𝜈)𝑘𝑘𝜆𝜆𝑖𝑖,𝑡𝑡−𝑘𝑘+1 − 1

�. 

Then, we compute the premium of an insured who had only one claim at time 𝑤𝑤 < 𝑡𝑡: 

 

𝜋𝜋𝑖𝑖,𝑡𝑡+1
(𝑤𝑤) = 𝜆𝜆𝑖𝑖,𝑡𝑡+1 �

𝜈𝜈𝑡𝑡𝑏𝑏 + 𝜈𝜈𝑡𝑡−𝑤𝑤+1

(𝜈𝜈)𝑡𝑡𝑎𝑎 + ∑𝑡𝑡
𝑘𝑘=1 (𝜈𝜈)𝑘𝑘𝜆𝜆𝑖𝑖,𝑡𝑡−𝑘𝑘+1 − 1

�. 

The impact of the claim at time 𝑤𝑤, or the increase in premium, is then calculated as: 

 

𝜋𝜋𝑖𝑖,𝑡𝑡+1
(𝑤𝑤)

𝜋𝜋𝑖𝑖,𝑡𝑡+1
= �

𝜈𝜈𝑡𝑡𝑏𝑏 + 𝜈𝜈𝑡𝑡−𝑤𝑤+1

𝜈𝜈𝑡𝑡𝑏𝑏
� = 1 +

𝜈𝜈−𝑤𝑤+1

𝑏𝑏
= 1 + �

𝜈𝜈
𝑏𝑏
� 𝜈𝜈−𝑤𝑤 

Because 𝜈𝜈 < 1 for the HF model, which means that the premium increase will amplify as 𝑤𝑤 
grows. Moreover, we note that the increase does not depend on 𝑡𝑡 or on the age of the claim 
(𝑡𝑡 − 𝑤𝑤). In other words, the HF models suppose that the impact of a claim at time 𝑤𝑤 will stay 
the same for all future contracts 𝑡𝑡.  

In classic panel data models, such as the MVNB or the NBBeta models, it is impossible for an 
insured who claims at least once to ever have a premium equal to an insured who has never 
claimed, even after several years since the first and only claim. With the HF generalization and 
the introduction of the weight parameter 𝜈𝜈, we would expect that the impact of old claims 
gradually becomes insignificant in future premiums. We just saw that this is not the case. For 
the HF-NBBeta used with our data, we obtained 𝑏𝑏� = 5.5 and 𝜈̂𝜈 = 0.9, which means that a 
claim at time 𝑤𝑤 = 1 will cause an 18.2% increase in the premium for all future contracts, while 
a claim at time 𝑤𝑤 = 15 will always increase the premium by 78.9% compared with an insured 



who never files an accident. Even if the fit of the HF models is interesting, this property of the 
model means that it cannot be seriously considered in practice: the longer the insureds’ driving 
experience, the higher their penalty for filing an accident. The BMS-panel model does not have 
this property: for example, with the maximum number of levels 𝑠𝑠 = 11, an insured without 
any claims for 11 consecutive years will have the same premium as a similar insured who did 
not report at all. We think that this property is more realistic, and more desirable for insurers. 

The BMS-NB1 model with 𝑠𝑠 = 11, ℓ∗ = 1, and Ψ = 6 supposes a linear relativity for claim 
penalty with 𝛿𝛿 = 0.12. Depending on the BMS level of each insured, it means that the 
premium will be equal to 1.12,1.24, … ,2.08,2.20 times the basic premium (level 1). For 
example, for an insured at level 2, a claim during the year results in a jump of Ψ = 6 levels, 
which represents an increase of approximately 64% of the premium. Conversely, a year without 
claim generates a premium reduction of 11%.  

To evaluate more precisely the impact of the current level and the dependence between claim 
counts on different contracts, based on the result of Proposition 3.4, we compute the 
covariance of the BMS-panel model, as shown in Figure 5. To compare the covariances, we also 
included the covariance implied by the NBBeta model, which stays constant over time. Unlike in 
the HF model, the covariance depends on ℓ𝑡𝑡, the BMS level at time 𝑡𝑡. The dynamic property of 
the BMS-panel model can be observed: the dependence between annual contracts decreases 
as the lag grows. We think that this is one of the most important properties of a merit rating 
plan. The impact of ℓ1 (the level of the BMS at time 1) on the covariance is clear. For example, 
as an insured located on ℓ1 = 1 cannot attain a lower level at time 2, the covariance between 
𝑁𝑁1 and 𝑁𝑁2 is limited. As ℓ1 grows, the covariance also increases, but because the impact of 
one claim on the next BMS level is Ψ = 6, we observe that the covariance begins to decrease 
for ℓ1 > 5. Finally, insured on ℓ1 = 𝑠𝑠 = 11 are also limited, this time by the fact that they 
cannot attain a higher BMS level. As the lag between two numbers of claims grows, the 
covariance decreases and the impact of ℓ1, the level of the BMS at time 1, vanishes. 

   Figure 5: Covariance of the BMS-panel depending on the level ℓ. 

 
 

 



5. Conclusion 
The BMS approach proposed in this paper generates a claim score that is easy to explain. The 
claim score is also easy to use because it summarizes the whole claim experience of an insured, 
by also taking into account the age of each claim. While we initially wanted to show that the 
BMS-panel model was practical and flexible, we were surprised to see that it also generated a 
much better statistical fit than some of the most popular counting distributions known in the 
actuarial literature. The decreasing covariance of the model, which assigns a lower weight to 
older claims, seems to best explain the interesting predictive power of the model. Indeed, the 
vast majority of existing models do not show such flexibility. The HF model proposed in this 
paper, which appeared to be a straightforward generalization of classic panel data models, 
seems an interesting solution. However, by analyzing the predictive premium of those HF 
models, we have shown that they become completely unpractical when a claimant’s insurance 
history grows. Indeed, the impact of a single claim for an insured with a long driving experience 
becomes so important that no insurer would be interested in implementing such an approach. 

Many studies and generalizations of the BMS-panel models are now possible:   

• we can study a two-dimensional generalization of the BMS approach, where several 
types of claims (such as at-fault or no-fault accidents) could be modelled;  

• achieving a better understanding of the multivariate dynamics in insurance; and  

• many properties of the BMS, already developed and understood, can now be applied to 
BMS-panel models, e.g., asymptotic properties of the BMS, tools to compare merit 
rating plans, and hunger for bonus.  
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