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Abstract 
The repeated history of pandemics, such as SARS, H1N1, Ebola, Zika, and COVID-19, has shown 
that pandemic risk is inevitable. Extraordinary shortages of medical resources have been 
observed in many parts of the world. Some attributing factors include the lack of sufficient 
stockpiles and the lack of coordinated efforts to deploy existing resources to the locations of 
greatest need. 

This paper investigates contingency planning and resources allocation from a risk management 
perspective, as opposed to the prevailing supply chain perspective. The key idea is that the 
competition for limited critical resources is not only present in different geographical locations 
but also at different stages of a pandemic. This paper draws on an analogy between risk 
aggregation and capital allocation in finance and pandemic resources planning and allocation 
for healthcare systems. The main contribution is to introduce new strategies for optimal 
stockpiling and allocation balancing spatio-temporal competition for medical supply and 
demand. 
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1. Introduction 
1.1 Lessons From Recent Pandemics 
An epidemic is an outbreak of a disease that spreads rapidly to a cohort of individuals in a wide 
area. According to the definition from the US Centers for Disease Control and Prevention 
(2012), “pandemic refers to an epidemic that has spread over several countries or continents, 
usually affecting a large number of people.” Because humans have little immunity to the new 
disease, a pandemic can emerge quickly around the world. One of the most disastrous 
pandemics in the recent history is the 1918 flu pandemic, which infected around 500 million 
people and resulted in the deaths of an estimated 50 million worldwide, more than those who 
died from World War I. Most recently, the novel coronavirus disease of 2019 (COVID-19) is an 
infectious disease caused by a new virus that only emerged in late 2019 and has since spread to 
nearly every country in the world. As estimated by the International Monetary Fund (2021), the 
global economy contracted by 3.5% in 2020. However, COVID-19’s far-reaching impact and the 
consequent economic fallout due to the loss of productivity are yet to be realized; as of May 8, 
2021, the number of infected cases had accumulated to over 157 million worldwide, with the 
death toll reaching over 3.2 million (see, for example, Worldometer, 2021). 

The repeated history of pandemics in recent decades, such as SARS, swine flu, Ebola, and the 
most recent, COVID-19, has taught us that pandemic risk is inevitable. Recent research studies 
(see, for instance, Morse, 1995; Jones et al., 2008) have shown that the frequency of pandemics 
has increased over the past century due to increased social connectivity, long-distance travel, 
urbanization, changes in land use, trade, consumption of wild animals, and greater exploitation 
of the natural environment. Based on the data collected from various sources (for example, 
Centers for Disease Control and Prevention, 2018; World Health Organization, 2018; World 
Health Organization, 2019), Figure 1 is created to visualize both the frequency and severity of 
well-recognized pandemics and public health emergencies of international concern declared by 
the WHO since the 1900s. The vertical axis represents the number of documented infections on 
a logarithmic scale. Both the size and color scale of the circles indicate the number of deaths 
resulting from the pandemics and public health emergencies. The alarming pattern of increased 
frequency clearly points to the critical importance of pandemic risk management. 
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Figure 1: Frequency and severity of pandemics and public health emergencies since the 1900s 

 
Governments around the world have been taking the blame for their failure to promptly 
implement appropriate policies to contain the pandemic. Many countries experienced severe 
shortages of resources. Ranney, Griffeth, and Jha (2020) studied the critical role of scarce 
resources, such as ventilators and personal protective equipment (PPE), in shaping the direction 
of COVID-19. Such an unprecedented challenge exposes the inadequacy of contingency 
planning and resources-allocation strategies of public health systems. The lack of planning 
drove policymakers to make impromptu decisions on resources acquisition and allocations that 
may have exacerbated the extraordinary shortage. 

The United States boasts one of the best healthcare systems, with a large network of 
healthcare professionals, the best-equipped medical facilities and hospitals, and the most 
advanced medical technology. Yet, the country was underprepared for the COVID-19 pandemic. 
There were severe shortages of diagnostic and preventative medical supplies both for 
healthcare providers and the general public in many states in the early stage of the pandemic, 
which made it difficult for public authorities to contain it. According to a recent report by 
President Obama’s former advisors on science and technology (Holdren et al., 2020), there 
were several contributing factors to the lack of medical resources:  

1. National reserves of critical medical supplies were not replenished sufficiently prior to 
COVID-19. The Strategic National Stockpile (SNS) was established by the US government 
in 2003 as the national repository of pharmaceutical and vaccination stockpiles. The SNS 
relies on the appropriation of funding from Congress. Much of the mask stockpile was 
depleted during the 2009 H1N1 pandemic, and Congress did not act quickly enough to 
provide the funding to replenish the stockpile to the appropriate level projected by 
many studies. 

2. In order to minimize inventory cost and improve efficiency, many manufacturers and 
supply chain managers of medical supplies shifted to just-in-time (JIT) inventory systems 
prior to the pandemic. Goods were received only just in time for production and 
distribution. The JIT system relies on the ability of manufacturers to accurately predict 
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demand. The initial public policies such as lockdowns caused major disruptions to supply 
chains around the world, and there were insufficient inventories to absorb surging 
demand. 

3. There was a lack of sufficient coordination among federal and state governments to 
deploy existing resources to the most devastated areas in the country. Healthcare 
professionals are put at high risk when treating patients without sufficient PPE. It was 
difficult to uncover and contain the spread of disease without adequate testing. Several 
states in the United States acted on their own to secure supplies from foreign 
manufacturers, and engaged in a bidding war for limited supplies (Estes, 2020). Existing 
resources were not necessarily distributed on a basis of health need (Tobin-Tyler, 2020). 
Many of the hardest-hit states have had to ration care, while other states have had low 
utilization of their resources. 

While there are policy-related issues that require policymakers’ action, academics can 
contribute to the understanding of pandemic evolution and the resulting dynamics of demand 
and supply. There is a clear need for the development of a scientific foundation for adaptive 
strategies for balancing demand and supply and rationing limited resources. Contingency 
planning and resources allocation in a centralized form have been advocated as two coherent 
strategies to mitigate catastrophic economic consequences from a pandemic; see, for example, 
Jamison et al. (2017). Ranney, Griffeth, and Jha (2020) argued that the government should have 
tracked the use of resources and the projection of needs in all subsidiaries, and should have 
coordinated allocation of resources to reduce shortages across subsidiaries and over time in the 
course of a pandemic. A comparable example of centralized planning is the Federal Emergency 
Management Agency, which administers many pre-disaster risk mitigation programs, such as 
national flood insurance, mitigation grants, and post-disaster response plans, including search 
and rescue teams, medical assistance teams and monetary relief; see Vanajakumari, Kumar, 
and Gupta (2016) and Stauffer and Kumar (2021) for information. 

Centralized planning and resources allocation have long been practised as risk management 
strategies in the financial industry. For example, banks and insurers are heavily regulated by 
governments to ensure their capabilities to absorb severe financial losses and endure adverse 
economic scenarios (Segal, 2011). The central hypothesis of this paper is that many risk 
aggregation and capital allocation techniques drawn from financial and insurance literature can 
be extended and applied to pandemic resources planning and allocation. 
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Figure 2: New York, Florida, and California experience different phases of COVID-19, based on 
data as of September 12, 2020 from The Atlantic (2020) 

 

1.2 Case Study 
Figure 2 depicts the daily confirmed COVID-19 cases in the states of New York, Florida, and 
California in 2020 and 2021. More specifically, the timespan of data used in this paper is from 
March 2020 to March 2021. One could observe that, among these three states, New York was 
first hit the hardest by the pandemic in April 2020, while both Florida and California 
experienced the first peak of cases around July and August in that year; moreover, although 
both New York and Florida showed comparatively fewer cases in January 2021, California was 
savaged by COVID-19 around that time. 

Let us do a thought experiment for the moment. Imagine that these three states established a 
resource-pooling alliance prior to the pandemic. They could have complemented each other by 
delivering one state’s surplus resources to aid another in deficit. For example, in April 2020 the 
alliance could have coordinated the efforts to send initial stockpiles and increase emergency 
production to support New York; by July and August 2020, when both Florida and California 
were hit the hardest, unused resources in New York could be made available to both Florida 
and California; in January 2021 the remaining resources, together with additional production, 
should have been redirected from both New York and Florida to California. Such a coalition is 
not unimaginable even in a decentralized political system like the United States. In April 2020, 
six northeastern states (New York, Connecticut, New Jersey, Rhode Island, Pennsylvania, and 
Delaware) formed a government procurement coalition for critical medical equipment in an 
effort to avoid a bidding war (Holveck, Racioppi, and Shanes, 2020). 

The purpose of this paper is to propose an overarching framework for different regions to 
optimize stockpiling and resources allocation at different pandemic stages in order to best 
utilize limited resources. While the alliance of the above three states is used as an illustrative 
example throughout this paper, the proposed framework can also be implemented in 
coordination among other administrative divisions, such as provinces and territories in Canada, 
as well as international collaboration on the production, procurement, distribution, and pooling 
of resources. 
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1.3 Pandemic Risk Management Framework and Contribution 
A vast amount of recent literature on COVID-19 focuses on the prediction of transmission 
dynamics (e.g. Fernández-Villaverde and Jones, 2020; Hortaçsu, Liu, and Schwieg, 2021), 
infected cases (e.g. Giordano et al., 2020), economic impact (e.g. Acemoglu et al., 2020; 
Gregory, Menzio, and Wiczer, 2020), and the effect of non-pharmaceutical intervention and 
other public policies (e.g. Charpentier et al., 2020). However, to the best of our knowledge, 
academic research on quantitative frameworks for contingency planning and resources 
allocation in response to pandemic risk is rare. While the banking and insurance industries have 
long had a rich tradition of developing technologies for robust risk management, the focus has 
been largely on financial and insurable risks. This paper aims to take advantage of the vast 
medical literature on epidemic modelling and apply classic concepts from risk management and 
insurance literature, such as reserving and capital allocation, to pandemic risk management. 

Strategic pandemic planning requires scientific assessment, rather than on-the-fly ad hoc 
decisions and patchworks for damage control. In accordance with current practices of national 
pandemic preparedness and control strategies around the world, we summarize and propose a 
three-pillar framework for quantitative pandemic risk management: 

• Pillar I: Regional and Aggregate Resources Supply and Demand Forecast. Any pre-
pandemic preparation plan should consist of a supply-and-demand assessment and 
forecast. The supply side should include inventory assessments of critical resources and 
supplies, the maximum capacity of services, and the capability of emergency acquisition 
and production. The demand side requires an understanding of the dynamics of a 
potential pandemic across regions and across borders. Historical data and predictive 
models can be used to project the evolution of a pandemic and the resulting surge in 
demand around a healthcare system. 

• Pillar II: Centralized Stockpiling and Distribution. A central authority coordinates the 
efforts to develop a national preparedness strategy and to set up reserves of critical 
resources, including preventative, diagnostic, and therapeutic resources. A response 
plan is also necessary to understand how the central authority can deliver resources to 
different regions quickly to meet surges in demand and to balance competing interests 
and priorities. 

• Pillar III: Central–Regional Resources Allocation. A pandemic response plan is critical for 
a central authority to contain and control the spread of a pandemic in regions under its 
jurisdiction. As demand may exceed any best-effort pre-pandemic projection, the 
authority needs to devise optimal strategies that best utilize limited existing resources 
and minimize the economic cost of supply–demand imbalance. A coordination strategy 
needs to be in place to ensure smooth communications with regional authorities. The 
allocation strategy should be based on scientifically sound methods, taking into account 
spatio-temporal differences across regions to ensure fairness and impartiality. 
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Figure 3: Three-pillar pandemic risk management framework 

 
It should be pointed out that while the first pillar is not the focus of this paper, it plays a critical 
role in ensuring the adequacy and effectiveness of planning and responses in the second and 
third pillars. 

The proposed framework applies regardless of predictive models for projecting reported cases. 
The main technical contribution of this paper lies in the second and third pillars, for which we 
propose strategies for centralized resource stockpiling, distribution, and allocation. 

Table 1: Comparison between capital and pandemic risk management 

Capital risk management Pandemic risk management 

Business line and aggregate risk Regional and aggregate resources demand 

Risk-based capital Centralized stockpiling 

Business line capital allocation Centralized distribution and allocation 

Trade-off between surplus/deficiency and cost of 
capital 

Balance of supply/demand and economic 
cost 
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The paper draws inspiration from two sources in insurance and risk management literature:  

1. Insurance applications of epidemic models. Early applications of epidemic compartment 
models appeared in Hua and Cox (2009), in which real option pricing is used for 
operational risk management, and Feng and Garrido (2011), which analyzed epidemic 
insurance coverage. The study of epidemic insurance was extensively developed in a 
stochastic setting in Lefèvre, Picard, and Simon (2017), Lefèvre and Picard (2018), and 
Lefèvre and Simon (2020), and more recently included in the assessment of cyber risk by 
Hillairet and Lopez (2021). All of these compartmental models can be used in Pillar I.  

2. Capital allocation. The subject of capital management is well studied in the insurance 
literature. The applications of reserving and capital allocation form the basis of the 
proposed Pillars II and III. Table 1 reveals how our proposed framework shadows the 
classical capital risk management. While spatial balancing of allocation is well known in 
banking and insurance (see, for instance, Dhaene et al., 2012; Chong, Feng, and Jin, 
2021), this paper develops a novel spatio-temporal balancing of resources distribution 
and allocation, which, to the best of our knowledge, has not previously been studied in 
either financial or management literature. 

The rest of the paper is organized as follows. Each of the next three sections provides detailed 
discussion of one of the three pillars in the proposed pandemic risk management framework, as 
well as economic interpretations of resulting optimal strategies. Numerical examples are 
embedded in the discussion for better clarity. We conclude in the last section with discussions 
of potential applications and future work. 
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2. Pillar I: Regional and Aggregate Resources Demand Forecast 
In the pre-pandemic time, a central authority should first model the pandemic transmission 
dynamics in each region. Regardless of the choice of epidemiological models, that authority 
should calibrate the model in each region by its preparedness and other contingency 
measurements. Indeed, epidemic forecast models have been used for healthcare policy making 
and public communications; see, for example, Leung et al. (2020) and Tian et al. (2020). In this 
paper, in line with CovidActNow (2020) and Hill et al. (2020), the population in each region is 
divided into seven mutually exclusive compartments, namely the susceptible (S), the exposed 
(E), the mildly infected (I1), the infected with hospitalization (I2), the infected with intensive care 
(I3), the recovered (R), and the deceased (D). The dynamics among these seven compartments 
are governed by a set of ordinary differential equations, and the model is, in short, called the 
SEIRD. 

This SEIRD model is characterized by a set of ordinary differential equations that describe 
population flows among all the aforementioned compartments: 

 

All parameters in the set of equations bear clinical meanings;  = 1, 2, 3 is the transmission 

rate of the infected class  is the average latency period;  = 1, 2, 3 is the average 

duration of infection in the class Ii before recovery to the class  = 1, 2, 3 represents the 
rate at which conditions worsen and individuals require healthcare at the next level of severity; 
µ is the rate for the most severe cases in the class I3 to move to the deceased class D.  

Suppose that the total number of individuals in the entire population is N. Each of the ordinary 
differential equations represents a decomposition of instantaneous change in the population of 
a compartment. For example, the first equation shows that the instantaneous rate of reduction 
in the number of the susceptible, − dS(t), matches the sum of the rates of infection due to 
contacts with the infected of all classes, β1I1(t)S(t) + β2I2(t)S(t) + β3I3(t)S(t). The products are due 
to the law of mass action in biology. For example, the rate of secondary infection by the mildly 
infected, (β1N)I1(t)(S(t)/N), can be interpreted as the number of adequate contacts each 
infected makes to transmit the disease β1N multiplied by the number of infected I1(t), 
multiplied by the percentage that each contact is made with a susceptible person, S(t)/N. All 
other equations can be explained in similar ways. The estimations of these model parameters 
are well studied in the literature for COVID-19 as well as other pandemics; see, for example, Wu 
and McGoogan (2020), P. Yang et al. (2020), and X. Yang et al. (2020). 
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Based on these parameters, the basic reproductive ratio R0 of a pandemic is given by: 

 
The basic reproductive ratio R0 can be estimated by empirical data and is often used to calibrate 
other parameters. In what follows, we shall use a discretized version of the compartmental 
model. For example, we use the notation I1,j = I1(j∆t) to indicate the number of mild cases 
projected on the j-th period each with the length ∆t. We sometimes omit the information on ∆t 
as the time unit may vary depending on the reporting period. 

It is worth noting that estimating the parameters in the SEIRD model is not easy in practice. Its 
estimation accuracy is often limited by the quality of data. For example, the number of positive 
cases in a region can be altered by its testing capacity, and in turn affects the positivity data 
quality. However, we emphasize that the SEIRD model is widely accepted and it should be 
accurate as long as the model parameters are estimated with accurate data input. 

Based on predictive models such as the above-mentioned regional SEIRD models, a central 
authority could predict, prior to a pandemic or at the onset of a pandemic, changes in demand 
over the course of the pandemic. Resources require different stockpiling and allocation 
strategies, depending on their shelf lives. 

In this paper, we consider two types of medical resources, namely durable and single-use. 
Durable resources are those that can perform their required functions for a lengthy period of 
time without significant expenditure on maintenance or repair. Single-use resources are those 
that are designed to be used once and then disposed of. Mechanical ventilators and PPE are 
used as representative examples of durable and single-use resources respectively in this paper. 

Table 2: Percentage of severe intensive care unit (ICU) infected cases requiring ventilators 

  
Durable Resources: Ventilators 

Based on the findings in the medical literature (references within Table 2), there are estimates 
of the percentage α of the infected with intensive care that require the use of mechanical 
ventilators. These regional differences can be addressed in separate regional compartment 
models.  

We can use these estimates to project the ventilator demand by , where i 
indicates the i-th region in the alliance and j indicates the j-th day of the pandemic. The model 
can also be extended to include time-varying percentages of severe patients requiring 
ventilators. The calculations in the rest of the paper would carry through. Figure 4(a) below 
shows the projected ventilator demands in New York, Florida, and California based on the 
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SEIRD model proposed by CovidActNow (2020), which is calibrated to publicly available 
reported cases as of March 5, 2021, and demand assessment parameters in Appendix B. 

Single-Use Resources: Personal Protective Equipment 

The assessment of need for PPE sets varies by the patients’ class and the severity of their 
medical conditions in care, and the function of medical professionals. Table 3 offers an example 
of such a need assessment by the European Centre for Disease Prevention and Control (2020). 
Given these estimates, we can project the regional PPE set demand by 

 𝑋𝑋𝑗𝑗
PPE(𝑖𝑖) = θ𝐸𝐸�𝑆𝑆𝑗𝑗−1

(𝑖𝑖) − 𝑆𝑆𝑗𝑗
(𝑖𝑖)�+ θ𝐼𝐼2𝐼𝐼2,𝑗𝑗

(𝑖𝑖) + θ𝐼𝐼3𝐼𝐼3,𝑗𝑗
(𝑖𝑖), where θE is the number of PPE sets per exposed 

case, θI2 is the number of PPE sets per day per hospitalized patient, and θI3 is the number of PPE 
sets per day per intensive care patient. Note that Sj−1 − Sj represents the daily exposed cases 
whereas I2,j and I3,j keeps track of existing infected cases that require medical attention. Figure 
4(b) below shows how ventilator and PPE demands are projected to evolve over time for New 
York, Florida, and California, based on the model by CovidActNow (2020) and the PPE need 
assessment in Appendix B. 

In the first pillar, the central authority is expected to work with regional authorities and 
healthcare professionals to predict the dynamics of regional demands. All regional data are 
then compiled and aggregated to form the basis of forecasts for the system-wide resource 
demand. Suppose that there are a total of n regions in a healthcare system or medical resource 
alliance. For example, the aggregate ventilator demand can be determined by 

, while the aggregate PPE set demand may be given by .  

Figure 5 below shows how the aggregate ventilator and PPE demand prediction for the COVID-
19 pandemic could have been made in the hypothetical example of a three-state resources-
pooling alliance. 

Table 3: Minimum amount of PPE sets for different scenarios 

 Suspected Infected hospitalized 
cases 

Infected intensive 
care cases 

Healthcare staff Number of sets per case 
θE 

Number of sets per day per patient 

θI2 θI3 

Nursing 1–2 6 6–12 

Medical 1 2–3 3–6 

Cleaning 1 3 3 

Assistant nursing and 
other services 

0–2 3 3 

Total 3–6 14–15 15–24 
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Figure 4: Ventilator and PPE regional demand prediction in 
New York, Florida, and California alliance 

 

 
Observe that projections for ventilators and PPE sets show very similar patterns as both were 
driven by the same SEIRD model. The peaks in demand for ventilators are delayed compared 
with those for PPE sets in Figure 5 due to the fact that it may take a few days before newly 
diagnosed patients develop symptoms that require ventilator intervention. The projection of 
regional and aggregate demands offers health authorities a clear understanding of the temporal 
competition of critical resources. 

It should be pointed out that predictive models in Pillar I, such as the SEIRD model introduced in 
this section, are used for multiple purposes, as shown in Figure 3. First, they need to be 
developed prior to a pandemic using historical data, and to form the basis of demand forecasts 
for contingency planning in Pillar II. Then, as a pandemic starts to emerge, the predictive 
models also need to be recalibrated and updated with the latest medical knowledge and 
reported cases. New forecasts would then be fed into models to determine the optimal 
allocation strategies in Pillar III. As medical knowledge of the viral disease evolves and 
predictive models improve over time, Pillars I and III may be revisited from period to period. 
When a distribution schedule of resources requires an update, we can go back to Pillar II. 
Therefore, the three-pillar framework may be utilized in circles such as Pillars I, II, III, I, III, I, III, I, 
II, III, etc. This shall be further elaborated at the end of this paper. 

Figure 5: Ventilator and PPE aggregate demand prediction in New York, Florida, and California 
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3. Pillar II: Centralized Stockpiling and Distribution 
As the pandemic unfolds, many hospitals and healthcare facilities may run out of 
pharmaceuticals and other essential resources before emergency production can pick up and 
additional supplies become available. To meet the surge in demand at the onset of a pandemic, 
many countries maintain national repositories of antibiotics, vaccines, chemical antidotes, 
antitoxins, and other critical medical supplies. A centralized stockpiling strategy is intended to 
provide a stopgap measure to meet the surge in resources demand at the early stage of the 
pandemic. There is well-established literature on stockpiling strategies for influenza pandemics; 
see, for example, Greer and Schanzer (2013) and Siddiqui and Edmunds (2008). 

One should keep in mind that a practical stockpiling strategy is often an act of balance between 
adequate supply and economic cost. On one hand, under-stocking is a common issue as 
resources and their storage can involve heavy costs, and the actual demand during the 
pandemic outbreak could deviate from the projection; for example, Ellison (2020) claimed that 
as many as 20 states in the United States were expected to encounter shortages in ICU beds 
when COVID-19 cases peaked. On the other hand, excessive stockpiling for the long term could 
lead to unnecessary waste, especially for disposable and perishable resources; for instance, 
Facher (2020) reported that in March 2020, during the COVID-19 pandemic, the SNS in the 
United States stocked 13 million N95 masks, of which as many as 5 million may have expired, 
partly contributing to the nationwide shortage of masks. 

In the second pillar of our proposed framework, based on the estimated aggregate resources 
demand, the central authority could then develop stockpiling and distribution strategies in the 
time before a pandemic. Notice that durable resources such as ventilators can be reused 
throughout the pandemic, while single-use resources such as PPE sets must be disposed of after 
one-time usage. Hence, we have to treat them separately for optimal centralized stockpiling 
and distribution strategies. 

3.1 Durable Resources: Ventilators 
It is typical that a central authority has to determine an optimal initial stockpile size K0 of 
resources to maintain in some centralized location. In addition, to meet surges in demand the 
authority may need to reach contractual agreements with suppliers for emergency orders, 
which may be limited by the maximum production rate of a units per day during a pandemic. 
Since ventilators are durable, the stock of ventilators does not decrease over time due to usage. 
We assume that they can be deployed to different regions at negligible cost. Therefore, the 
total number of available ventilators in the entire alliance is given by Kj = K0 + aj, on the j-th day 
since the onset of the pandemic. Hence, the only decision variable of the central authority in 
the case of ventilators is the initial stockpile size K0. Since ventilators are durable, there will be 
a considerable idle stockpile, which can be repurposed after the pandemic ends. This paper 
focuses on the resource management during the course of the pandemic, and thus repurposing 
is not being considered herein. 
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Figure 6: Two extreme scenarios of initial stockpile size K0 for ventilators 

 
To better explain the need for an optimal initial stockpile size K0, consider two extreme cases in 
Figures 6a and 6b for the three-state alliance. On one end of the extreme, the central authority 
may decide to not hold any initial stockpile but simply rely on the maximum emergency 
production limit during the pandemic; Figure 6a shows clear severe shortages at all peaks of 
aggregate ventilator demand, and this is especially so around January 2021. On the other end, 
suppose that the central authority decides to hold an extraordinary amount of initial stockpile 
for ventilators to meet the highest peak of aggregate ventilator demand; Figure 6b illustrates a 
clear extreme oversupply of ventilators during most of the time of the pandemic; also, in this 
case the economic cost of severe over-storage can be huge. Therefore, the central authority has 
to take a delicate balance on an initial stockpile size K0 that takes into account the economic 
cost of shortage and oversupply, as well as storage costs. 

Consider the following optimization model for an initial stockpiling size. 

 
where m is the number of days of the pandemic, ωj is a weight for significance of precision for 
the costs on the j-th day of the pandemic, θ+ is an economic cost per squared unit of shortage, 
θ− is an opportunity cost per squared unit of oversupply, cj is the aggregate cost of possession 
per unit of ventilators per day, and c0 is the initial stockpile cost, which may include both the 
acquisition cost and expected cost of possession (storage, maintenance, inventory logistics, 
opportunity cost). The quadratic form represents the real economic cost of supply–demand 
imbalance. For example, the first term is the product of the quantity of shortage 

–  

and the (linear) variable cost per unit of the shortage 

 –.  

In other words, the larger the shortage, the higher the economic price to pay. As opposed to an 
absolute value of shortage or surplus, the quadratic form arguably better reflects the economic 
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impact of demand–supply imbalance, whose real economic cost should be understood by the 
law of demand. Another interpretation is that a severe imbalance can have a ripple effect on 
the society, such as causing public panic and erosion of trust in the government’s ability for 
crisis management, which requires additional cost for damage control. Therefore, the economic 
cost grows with imbalance in a non-linear fashion. For the same reason, we shall incorporate 
similar quadratic forms in the PPE contingency-planning problem as well as the resource-
allocation problems in later sections below. The weight wj can be used for different purposes. 
For example, it may be reasonable to assume that the precision of meeting demands in the 
near future is more important than that in the far future given the uncertainty with prediction. 
Another case may be to make the weight proportional to the daily demand Xj as the demand–
supply imbalance can have a greater impact on population-dense areas than otherwise. If life-
saving is an overriding goal, then one can set the opportunity cost of oversupply θ− to be zero. 
In practice, we could measure θ+ and θ− by regressing reported shortage or oversupply against 
estimated loss in gross domestic product or other economic measures during a pandemic. 

Figure 7: Optimal initial stockpile K0 relative to projected shortages without initial stockpile 

 
To understand the analytical solution to this problem, we need to look at the projected 
shortage without any initial stockpile, Yj := XVEN − aj, for j = 1, …, m, which is the accumulated 
demand less the accumulated supply apart from the initial stockpile. Note that we consider the 
accumulated supply because the resources are durable and can be reused. When Yj > 0, there 
is a drain on the initial stockpile as current demand exceeds the accumulated supply. 
Otherwise, the stockpile increases as supply exceeds demand. Because the economic costs of 
shortage and surplus are weighed differently, the value of this objective function depends on 
the number of days with a decreasing stockpile (Yj > 0) and those with an increasing stockpile 
(Yj  < 0). The analytical solution to this problem requires the sorting of projected shortages in 
ascending order. Let us denote the sorted sequence by {Y[j], j = 1, …, m}, where Y[j] represents 

the j-th smallest projected shortage. In the objective function (1), the cost coefficient θj± 
applies according to whether or not stockpile exceeds demand. If K0 is placed below Y[j], there is 
a shortage in the healthcare system and hence the cost coefficient θ+ is applied. Otherwise, 
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there is a surplus in the system and the cost coefficient θ− is applied. The optimality is achieved 
when K0 is kept at a delicate position (see Figure 7). The nature of the sum of squared shortages 
in (1) determines that the optimal initial stockpile K0∗ should be squeezed between Y[J−1] and Y[J] 
in such a way that 

 
Once J is identified, the optimal stockpile K0∗ is given by 

 
The proof of this result can be found in Appendix A.1. This result shows that the optimal initial 
stockpile K0 is the weighted average of all projected shortages discounted by the cost of 

possession relative to the economic cost of shortage, . The adjustment term  
indicates that the higher the cost of possession relative to the economic cost of imbalance, the 
fewer ventilators should be acquired. It is logical that if the cost of possession for durable 
resources is too high, the central authority in a poor country may have little financial means to 
pay for stockpiling and be left with no choice but to deal with the demand–supply imbalance. In 
contrast, if the economic cost of imbalance is too high due to lost productivity or even the 
society’s resentment regarding the government’s failure to meet demand, then the central 
authority would ignore the cost of possession and do everything possible to reduce the 
shortage. 

Figure 8: Optimal initial stockpile size K0 for ventilators according to 
different weights of economic cost 

 
Figure 8 depicts the optimal initial stockpile size in the case study. The model parameters are 
provided in Appendix B. Observe that optimal initial stockpiles are chosen to reduce shortages 
in the early stage and oversupply in the late stage of the pandemic, compared with those 
strategies shown in Figure 6. When the resource shortage costs the same or less than the 
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resource surplus, Figure 8a shows that the strategy requires less initial stockpiling due to the 
excessive amount of supply after the pandemic dies down. In contrast, if the shortage costs 
more than the surplus, the strategy is to reduce shortages in the early stage at the expense of 
increasing oversupply in late stages; see Figure 8b. 

3.2 Single-Use Resources: Personal Protective Equipment 
Similar to the case of durable resources, the central authority needs to set up an initial stockpile 
size K0 of single-use resources such as PPE and make contractual agreements with emergency 
suppliers, which can provide additional supply at the production rate 𝑎𝑎 units per day. Since PPE 
is single-use, during the pandemic the central authority has to stockpile PPE sets not only for 
the present but also for potentially deploying them at a later time in order to meet a surge in 
demand. Therefore, the central authority needs to plan for both the initial stockpile size K0 and 
the amount of distribution kj to all regions on day j. The dynamics of the centralized storage {Kj, 
j = 0, 1, …, m} are determined by the recursive relation Kj = Kj−1 +a−kj +(kj − Xj)+  for j = 1, …, 
m. The relation can be interpreted as follows. The current stockpile Kj is based on the previous 
period’s stockpile Kj−1, increased by the net surplus of new supply 𝑎𝑎 less the arranged 
distribution up to the total demand, max{kj, Xj}. In other words, if we arrange to distribute kj 
units but can only consume Xj < kj, then the unused amount should count towards the 
centralized storage for future use. 

Figure 9: Two extreme scenarios of distribution schedule k1, k2, ..., km for PPE 

 
Consider two extreme cases in Figures 9a and 9b in the case study. In an extreme case, assume 
that the central authority decides to distribute as much as possible to meet the demand until 
the centralized storage is exhausted. This aggressive early-distribution strategy is depicted in 
Figure 9a. After the storage depletion, the system relies only on the new supply, which clearly is 
not sufficient to meet demands and can cause severe shortages near the peak in January 2021. 
In the other extreme case, the central authority may choose to hold off dispersing any 
equipment at all till the point that the storage is believed to be sufficient to cover all future 
demands. Such a conservative distribution strategy is illustrated in Figure 9b. The challenge 
with this strategy is that the central authority would have to deal with the repercussions of not 
providing any assistance in the early stage of the pandemic. Therefore, it is sensible that the 
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central authority develops a distribution schedule that takes a temporal balance of varying 
needs from all regions. Here we introduce the optimization problem for both an initial stockpile 
and the distribution schedule of single-use resources. 

 
where cj is the centralized cost of possession per unit of PPE per day. It should be pointed out 
that the centralized storage should be kept non-negative for practical purposes and the 
distribution amount should also be kept non-negative. 

Figure 10: Optimal distribution schedule k1, k2, …, km and initial stockpile size K0 of PPE for 
the three-state resource-pooling alliance 

 
Figure 10 depicts the case of an optimal distribution schedule for the three-state alliance. 
Observe that the optimal supply distribution schedule stays below the trajectory of demand. 
The slight shortage results from the consideration of the cost of possession. Should the cost of 
possession be zero, the optimal supply would be to match the demand exactly at all times. The 
initial stockpile can be set artificially high so that any desired amount can be carried over from 
period to period and last long enough to support all future demands. In the presence of 
possession cost, Figure 10 also reveals a distribution strategy that in essence ignores the 
demands at the start of a pandemic and after the pandemic dies down, and instead focuses on 
meeting demands at the first peak of the pandemic. Keep in mind that the weight of 
significance ωj in this example is set to be proportional to the size of demand. Therefore, the 
strategy prioritizes meeting the demand in the first peak over other periods due to its high 
demand. If we were to choose the same weight ωj for all periods, the shortage would be more 
balanced among all periods. 

This optimization problem is cumbersome to be solved analytically. However, it is 
straightforward to show that any oversupply distribution scheme kj > XPPE must be sub-
optimal, and hence the problem can be simplified as follows: 

 
such that Kj = Kj−1 + a − kj ≥ 0 and 0 ≤ kj ≤ XPPE, for j = 1, 2, …, m. 
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Because of the convexity, it can be solved numerically using Disciplined Convex Programming 
(DCP), which requires minimal computational time (Grant, Boyd, and Ye, 2006). The solution 
shown in Figure 10 is obtained with the help of an R package, CVXR, developed based on the 
DCP method (Fu, Narasimhan, and Boyd, 2020). 
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4. Pillar III: Centralized Resources Allocation 
In the time of severe resource shortages, a coordinated effort becomes necessary to obtain 
additional supplies and to ration limited existing resources. Existing resources are not 
necessarily distributed on a basis of health need or justice (Tobin-Tyler, 2020). Many hardest-hit 
states have to ration care, while other states have low utilization of their resources. As alluded 
to earlier, not all regions experienced surges in demand at the same time (see Figure 2). It has 
long been argued that the US federal government should have tracked the current use and the 
projection of needs in all states, and coordinated the allocation of resources to reduce 
shortages across regions and over time during the COVID-19 pandemic (Ranney, Griffeth, and 
Jha, 2020). 

There are two common types of resource-allocation problems in the course of a pandemic, 
both of which can be formulated and cast in Pillar III of our proposed framework: 

1. Macro-level resources pooling. A central authority acts in the best interest of a union of 
many regions to increase supply and coordinate the distribution of existing and 
additional resources among different regional healthcare providers. 

2. Micro-level rationing. Facing an imbalance of demands and supplies in medical 
equipment and resources, hospitals often have to make difficult but necessary decisions 
to ration limited existing resources as well as new supplies. 

While in both cases the aim of allocation is to deliver limited resources to where they are 
needed the most, the macro-level pooling largely addresses spatio-temporal differences, and 
the micro-level rationing focuses on healthcare effectiveness and justice. The setting of 
standards, protocols, and policies can have a profound impact on the functioning of a 
healthcare system at the time of crisis. Therefore, the best practice of resources allocation 
should be based on scientific assessment and evaluation rather than on-the-fly ad hoc decisions 
and a patchwork of damage-control rules. 

1. Resources allocation should be based on a holistic approach to address concerns of all 
stakeholders. There are often conflicting interests and priorities for using limited 
resources. For example, when medical supplies are scarce, many countries, states, and 
cities are competing for resources. While each state acts in its best interest to acquire 
medical devices and protective equipment, a federal government may see the urgent 
need to seize control of the cargo to boost a centralized stockpile. A holistic approach 
aims to strike a balance among different objectives for various stakeholders. 

2. Scientific methods for resources allocation should be developed under a set of 
optimization objectives, meet certain ethical and humanitarian criteria, and take into 
account logistic and budgetary constraints. When a pandemic breaks out, it often 
spreads from one cluster to another in geographic areas due to its transmission 
dynamics and affects different sectors of a healthcare system in a chain reaction. 
Medical needs can vary greatly by demographics and other socio-economic factors. 
While there is no universal “one-size-fits-all” solution for allocation problems, there are 
a set of quantifiable and justifiable criteria. 



 

22 

While it is difficult to address all of these criteria in a single model, we believe that they can be 
formulated similarly, as in this section. 

• Minimization of shortage and oversupply 

Decision makers need to take into account spatio-temporal differences in demand and 
supply over the course of a pandemic. It is imperative for authorities to allocate more 
resources to epicenters of a pandemic than other regions under less imminent threat. 
For example, New York City was the first in the State of New York to witness the COVID-
19 pandemic, when other counties had few to no reported cases (Associated Press, 
2020). The state governor issued an executive order to take ventilators and other 
protective gear from underutilized private hospitals and companies. As infected cases 
stabilize or even decline in pandemic-ravaged regions, a central authority may need to 
shift its attention to other areas of potential outbreaks and allocate resources in 
anticipation of new waves. This was also evident when many states in the United States 
in the early stages of the COVID-19 outbreak took pre-emptive measures to procure 
medical supplies from countries like China and South Korea which had developed 
production capacities after the local epidemics were under control. Therefore, it is 
sensible to develop an allocation strategy that minimizes shortages and oversupply 
across different regions and over the life-cycle of a pandemic. 

• Promoting and rewarding instrumental value 

Critical preventive gear and medical care should be provided first to healthcare workers 
in the front line, and employees in essential businesses and critical infrastructure. Not 
only because they are at high risk due to their exposure to infectious disease, but also 
because the society bears a heavy economic cost when these workers fall ill and are 
unable to return to work. The lack of a sufficient front-line workforce may cause severe 
disruptions to public services, which can have a rippling effect on the rest of the 
economy. Priority access to medical care can be a critical incentive for retention. 

• Prioritizing the worst-off 

The ultimate goal of a healthcare system is to save lives. Access to critical medical 
treatment should be reserved for patients facing life-threatening conditions when there 
is an insufficient supply of equipment such as ventilators. 

• Maximization of benefit from treatment 

Maximization of the benefit requires a prognosis on how patients are likely to survive 
with treatment. A recent study of COVID-19 patients in the United States found that 
most patients did not survive after being placed on mechanical ventilators (Preidt, 
2020). To maximize the benefit, access to ventilator treatment should be prioritized for 
younger patients who can benefit the most and have a higher chance of survival. For 
example, many hospitals in Italy lowered the age cut-off from 80 to 75 in order to ration 
limited ventilators (Rosenbaum, 2020). Such a strategy often leads to ethical dilemmas 
when in conflict with prioritizing the worst-off. 
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The third pillar of the proposed pandemic risk management framework is to allocate limited 
resources for different regions, building on the proposed optimal centralized stockpiling and 
distribution strategies. Figures 11a and 12a put the regional resources demand and optimal 
aggregate supply together for the ease of exposition. 

Figure 11: Optimal ventilator allocations in New York, Florida, and California 

 
Figure 12: Optimal PPE allocations in New York, Florida, and California 

 

4.1 Durable Resources: Ventilators 
Throughout this section we consider the allocation of existing resources in a healthcare system 
with n regions during a pandemic that lasts for m days. We always use the superscript (i) to 
indicate quantities for the i-th region. Bear in mind that there could still be an aggregate 
shortage of supply for ventilators and PPE sets to all regions in the alliance. The central 
authority would have to take a holistic view of competing interests of participating regions. On 
each day in the pandemic, when the aggregate demand exceeds the aggregate supply, the 
central authority should choose to allocate resources taking into account spatial differences in 
demand and supply. This motivates the optimization model for ventilator allocations: 
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where ω(i) is a weight to the j-th day of the pandemic in the i-th allied region, θ+(i) is an economic 
cost per squared unit of shortage, and θ−(i) is an opportunity cost per squared unit of 
oversupply. The quadratic term θ±(i)/2 

 
X(i) − K(i) represents the economic cost due to the 

demand–supply imbalance. Note that θ±(i)/2 measures the rate of increase in cost per unit, and 
hence θ±(i)/2 

 
X(i) − K(i) represents the linear variable cost per unit. The variable cost in principle 

reflects the law of demand that the price increases with the quantity demanded. Therefore, the 
total cost is the product of variable cost per unit θ±(i)/2  X(i) − K(i) and the total unit of 
imbalance X(i) − K(i). The economic cost is used to account for both potential loss of life due to 
the lack of resources and the opportunity cost of idle medical sources due to oversupply. The 
structure of economic cost is used not only for its mathematical tractability, but also to penalize 
large imbalances of demand and supply. The weight ω(i) can be used to measure the relative 
importance of resource allocation for region i at time tj to other regions and time points. There 
are some examples of its application under various criteria for resource-pooling or resource-
rationing. For example, in a national contingency plan, where X(i) is used as the predicted 
demand from each region, for political reasons a metropolitan area with a large population may 
carry more weight than a rural area with a small population. When hospitals have to ration 
limited resources, they may implement the strategy to maximize the benefit from treatment. In 
such a set-up, X(i) represents the demand from a particular cohort. A decision maker may give 
higher weight to age cohorts with more remaining life years than age cohorts with fewer 
remaining years. It is also a common strategy to give priority for access to medical resources to 
healthcare workers. In both cases, the set of weights ω(i) reflects the management’s priorities 
and preferences over time. Some specific choices of the weights ω(i) can also reflect 
demographic characteristics. For example, if a region, say i, has a comparatively larger 
population of elderly people who are more susceptible to the pandemic, then the epidemic 
compartmental models, such as the aforementioned SEIRD model, would project a higher 
demand X(i). In this case, when the regional weight ω(i) is set to be monotonic with respect to 
the projected regional demand X(i), then a higher priority will spontaneously be given to the 
region i’s quadratic term of economic cost. 

The constraint K(i) = Kj indicates that resources allocated to different regions must add up to 
the total amount of supply available to the central authority. The evolution of supply {Kj, j = 1, 
2, …, m} is based on the centralized stockpiling strategy discussed in previous sections. The 
evolution of demand {Xj , i = 1,…, n, j = 1, 2, …, m} can be based on forecasts from 
epidemiological models fitted to the most recent local data. 

4.2  Single-Use Resources: Personal Protective Equipment 
The allocation of single-use resources is similar to that of durable resources. The key difference 
lies in the amount of the stockpile to be released each period. For durable resources, the 
central authority distributes the accumulated stock Kj at any given time j. Because single-use 
resources cannot be reused, the central authority can only distribute incremental amounts 
according to some distribution schedule. With this difference in mind, we formulate the 
allocation of single-use resources by an optimization problem. 
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Note that the distribution amount kj could be determined prior to a pandemic by some 
contingency planning or during a pandemic by an adjusted distribution schedule. Section 3.2 
“Single-Use Resources: Personal Protective Equipment” offers an example of how such a 
distribution schedule can be determined to take into account temporal competition for single-
use resources. 

4.3  Holistic Allocation Algorithms 
The analytical solutions to allocation problems regarding both durable and single-use resources 
can be derived in the same way for the reason that they essentially take the same form. 
Hereinafter, because the allocation is done from period to period in the solution, we shall 
suppress the subscript j for brevity. To simplify notation in the solution, we will use X(i) without 
the indicator of resource type for the demand in region i, and use K(i) for the quantity of 
allocated resources in region i. 

Here we discuss the analytical solutions to the optimization problems presented above, from 
which we can glean economic insights. The proofs of these solutions are given in Appendix A.2.  

The central authority has to first determine whether or not there is a system-wide surplus or 
shortage. The allocation strategy differs under these scenarios. 

It is worth pointing out that, in either scenario, the pandemic resource-allocation problem is in 
essence a model of Pareto optimality with regard to competing interests of members in a 
group. Pareto optimality is a widely accepted concept used to study economic efficiency for 
finite resources allocation. The optimality is attained when there is no alternative allocation 
which can improve the welfare of some members without worsening that of other members. 
The solution based on such an optimality might result in an allocation being sub-optimal to 
certain members; yet the Pareto optimal allocation minimizes the overall objective as a group. 
The allocation problem that involves members with competing interests has been extensively 
studied in Chong, Feng, and Jin (2021), and we will borrow some ideas from that work to make 
economic interpretations of the results of allocation models here. In addition, as a matter of 
fact, one could also perceive those optimization problems in the “Pillar II: Centralized 
Stockpiling and Distribution” section being formulated as self-Pareto optimality across time. 

System-wide Surplus 

If there is an overall surplus in the healthcare system at time j (i.e., , then only the 
economic cost for oversupply θ−(i) applies and the optimal allocation of existing supply to the i-
th region is given by 
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Observe that the allocation formula (3) has an explicit economic interpretation, which shows 
that the optimal supply for region i results from a balance of two competing optimal solutions: 

• Self-concerned optimal supply: X(i) 

If region i can ask for as much as it needs, then this amount shows the ideal supply in 
the best interest of the region alone. The demand and supply for all other regions are 
ignored in its consideration. 

• Altruistic optimal supply:  

If the region i places the interests of all other regions above its own, then the medical 
supply goes to other regions and region i ends up with the leftover amount. 

The central authority has the responsibility of mediating among regions competing for 
resources. The formula indicates that the optimality for region i in consideration of the entire 
system is the weighted average of two extremes, namely the self-concerned optimal and the 
altruistic optimal supplies. It should be pointed out that the average of two optimal supplies is 

determined by the harmonic weighting  as opposed to arithmetic weight 

. It is known in Chong, Feng, and Jin (2021) that in multi-objective Pareto 
optimality the harmonic weighting is always used for balancing competing interests of 
participants in a group, whereas the arithmetic weighting serves the purpose of balancing 
competing objectives of the same participant. 

An alternative interpretation of formula (3) can be obtained from the equivalent formula 

 
It follows from (4) that the allocated resource is always presented as an adjustment to the 
actual demand. When there is a surplus in the system supply after optimal supplies have been 
distributed to all regions in order to fully meet their demands, then additional resources can be 
made available for region i and each region obtains a portion determined by harmonic 

weighting. Observe that  as expected since . 
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System-wide shortage 

If there is an overall shortage in the healthcare system at time j (i.e.,  ), it 
turns out that the optimal allocation strategy is to deliver the resources where they are needed 
the most. We can summarize the algorithm in three steps: 

• Step 1: Demand ranking 

The first order of business is to sort regional demands {X(i), i = 1, …, n} in a descending 
order. We use the subscript [i] to indicate the i-th largest order statistic; i.e., X[1] ≥ …≥ 
X[n] ≥ 0. The ranking of regional demands determines the order in which the regions are 
considered for resources allocation in the next step. 

• Step 2: Frugality test 

The algorithm first tests cases that perform allocation rules in a similar way to (4). For 
any fixed I = 1, …, n, consider the holistic allocation rule that provides for I regions with 
largest demand by 

 
To find the optimal number I of regions to support, the algorithm ensures that the 
allocation rule should be frugal to meet the following criteria: 

1. The total supply K is only almost enough to meet the demands for all I regions; 

 
2. When the allocation rule (5) is forcefully applied to all regions, the I regions with 

highest demands should receive non-negative allocation and the rest of the 
group negative allocation. 

 
There is a unique value of I that passes the frugality test. As the aim of the strategy is to 
cover as many regions of highest demand as possible, the search algorithm stops after 
the total demand of I regions exceeds the available supply. The algorithm would reach a 
rule that can be rewarding for those I regions but discourages allocations to the rest. 

• Step 3: Holistic allocation 

Once the algorithm settles on the value of I, all existing resources are divided among the 
I states according to the holistic allocation principle. In other words, the allocation of 
supply to the i-th region is given by 
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The general idea of the holistic allocation is illustrated in Figure 13. The first row in the 
figure shows that when there is a system-wide shortage, the total demand in all I 

regions  can be viewed as the composition of the total supply K and the 

shortage . Therefore, in the process of regional allocation, those I 
regions need to not only share the total available resources, but also jointly carry the 
burden of shortage, which is in proportion to their respective harmonic weight B˜[i], for 
i = 1, 2, ..., I. Therefore, each region receives its demand less its “fair” portion of the 
system-wide shortage; i.e., X[i] − B˜[i]Y. For example, the amount of resources allocated 
to region i is K[1] and the shortage to be shared is given by B˜[1]Y, which is represented 
by the stippled area in Figure 13. Those two parts add up to the total demand in that 
region; i.e., X[1]. One could argue that a limitation of this solution is that there is no 
resource allocated to regions I + 1 to n and it would be unreasonable for ethical reasons. 
Such an issue can be addressed by setting some minimal amount of allocation in each 
region. This can be easily incorporated by extending the optimization model with 

additional constraints that  for  and  where 

 is some minimal supply mandated by policymakers. 

The solutions to the three-state alliance for pooling ventilators and PPE sets are shown in 
Figures 11b and 12b. Figure 11b depicts the case of optimal allocation strategies for ventilators, 
which confirms the intuition in the “Case Study” section. In April 2020, the central authority 
could have optimally reallocated all available aggregate ventilators in the alliance to New York. 
This is owing to the fact that New York has the highest demand of all three states. By May and 
June 2020, ventilators in New York could have been gradually reallocated to both Florida and 
California; in July and August 2020, with the reallocated resources from New York, both Florida 
and California should have experienced no shortage of ventilators at all. In January 2021, when 
there is another rapid surge of demand, the supply of ventilators is shifted from the relatively 
less impacted states (i.e., New York and Florida) to California, where the increase in demand is 
extraordinary. 
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Figure 13: Holistic allocation of resources in the face of system-wide shortage 

  
Figure 12b illustrates optimal allocation strategies for PPE sets in the case study. In April 2020, 
the central authority could distribute stockpiled PPE sets and have them all sent to New York 
for its emergency response. As the pandemic dies down for New York and picks up for 
California and Florida in June 2020, the resources are more evenly spread. In August 2020, once 
the shortage is contained in all three states with relatively little outstanding demand, the 
available PPE sets should be stashed in preparation for the simultaneously rising demands that 
peak in January 2021. 
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5. Adjustments in Real Time 
As alluded to earlier, while this paper proposes the three-pillar framework, the three pillars 
should be utilized in a cycle. COVID-19 has taught us that a pandemic's progress is hard to 
predict. In the early stage of the outbreak, when there is little clinical data, Pillar I for resource-
demand prediction is based on “best estimates” for epidemiological models available at the 
time. It is possible that the action planned, prior to a pandemic, in Pillars II and III could be sub-
optimal during the pandemic. This section briefly discusses adjustments needed in the three-
pillar framework in real time. 

Suppose that at a certain time point in the pandemic, say l, for 0 < l < m, the pandemic has not 
evolved as predicted by epidemiological models, where m could be an estimated end time of 
the pandemic. For Pillar I, the clinical parameters in the compartmental model, such as the 
transmission rate, can be recalibrated using the data collected from time 0 until time l. 
Moreover, the usage parameter of resources by each compartment also needs to be re-
evaluated. These two updates together provide an up-to-date prediction on resources demand. 

During the pandemic, there may be a need to readjust distribution strategies for single-use 
resources, as described in Section 3.2. If the previous distribution strategy was based on an 
overly liberal estimate of demand, an oversupply of single-use resources may cause waste in 
regions. If it was based on a conservative estimate, a shortage may occur. Therefore, it is critical 
for decision makers to recalibrate demand projections and feed them into the model for an 
optimal distribution strategy.  

Suppose that the new demand projection is given by  according to the 
updated information. The production rate may have also been updated to 𝑎𝑎� per day. The 
current stockpile is known to be Kl. Then we reconsider the optimal distribution schedule 

 
Note that this optimization problem is the analogue of (2) with updated demand projections. 

For Pillar III, based on the new prediction on resources demand, and the new distribution 
strategic plan for single-use resources, allocation strategies are updated by solving the 
optimization problem at each time, from l to m, formulated as before. In practice, this implies a 
confiscation of all resources held by all regions in the alliance for a complete reallocation. 

Finally, the cycle of adjustments may be repeated periodically throughout the pandemic. The 
fundamental philosophy is that while we cannot change what happened in the past, we can 
make optimal decisions given current forecasts of the future. 
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6. Conclusions and Limitations 
The COVID-19 pandemic has placed extraordinary demands and constraints on public 
healthcare systems, exposing many problems, such as the lack of adequate planning and 
coordination. This paper investigates what could have been done better to reduce the 
imbalance of medical resources demand and supply. Inspired by classical theory of risk 
aggregation and capital allocation, this paper proposes a three-pillar resources planning and 
allocation framework: demand forecast, centralized stockpiling and distribution, and 
centralized resources allocation. This paper further develops a novel spatio-temporal balancing 
of resources and can potentially be used by public policymakers as a quantitative basis for 
making informed decisions on planning, funding, and rationing of critical resources. While this 
paper demonstrates the numerical case study based on a hypothetical three-state alliance of 
California, Florida, and New York, for the illustration of the effectiveness of these strategies, 
these are also applicable to the collaboration among other regions across the globe. 

It should be pointed out that the paper focuses on managerial insights that can be drawn from 
the optimization framework and its analytical solutions. There are two potential areas of 
improvement if a framework is adopted in practice. First, estimation errors of model inputs 
should be allowed and yet result in a robust confidence range of contingency planning and 
allocation. Second, stochastic compartmental models may be considered, while the 
optimization models can be extended to other risk measures such as expectation or value-at-
risk, and could even include constraints with deviation measurement. 

Moreover, there are admittedly a number of limitations in the hypothetical example of a three-
state resources-pooling arrangement. The three states are chosen for the most drastic effects 
of planning and allocation of existing resources for the purpose of illustration. It is beyond the 
scope of this paper to consider the political reality that may prevent such arrangements. In 
theory, the methodology can be applied to the actual voluntary coalition formed by six 
northeastern states in the United States, although the coalition was formed largely to avoid 
price competition in government procurement. Another limitation of this example is the 
egalitarian approach to shortages in different regions, which ignores ethical issues that may 
arise from freely moving resources from one region to another. While it may be economically 
optimal to deliver all resources in the system to the place where they are needed the most, it 
may be politically challenging to leave other places with less severe shortages without support. 
A potential remedy would be to introduce additional constraints in the optimization problems 
that require some minimal support for each region. 
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Appendix A: Analytical Solutions and Proofs 
A.1 Stockpiling of durable resources 

The optimization problem for the stockpiling of durable resources is as follows: 

 
Theorem A.1. Let Yj = Xj − aj, ∀j = 1, 2, · · · , m. Let S = 

 m    ωjcj + c0. Let Y[1] ≤ Y[2] ≤ · · · ≤ Y[m] 
be the increasingly ordered sequence of Y1, Y2, · · · , Ym. Let J = 1, 2, · · · , m such that 

 
where we define that when J = 1, 

 

 
Let 

 
If K0 < 0, then the optimal initial stockpile (which minimizes the objective function above) K0∗ = 0, 
and if K0

    ≥ 0, then K0
∗  = K0

  . 

Proof. Let Yj = Xj − aj, ∀j = 1, 2, · · · , m. Let Y[1] ≤ Y[2] ≤ · · · ≤ Y[m] be the increasingly 
ordered sequence of Y1, Y2, · · · , Ym. In that case, Yj represents the daily shortage when the 
initial stockpile is completely missing. Then the objective function becomes 

 
Note that F (K0) is a convex function in K0 for any K0 ∈ R. Let 

 
where G(·) is convex in K0. 
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The first-order derivatives of G at Y[1] and Y[m] are as follows: 

 

 

Then such that . Since 𝑆𝑆 = ∑ ω𝑗𝑗𝑚𝑚
𝑗𝑗=1 𝑐𝑐𝑗𝑗 + 𝑐𝑐0 ≥ 0,∃𝐾𝐾0′ ∈ �−∞,𝑌𝑌[𝑚𝑚]� such that 0[m] F  

(K0
  ) = 0, i.e., ∃ J = 1, · · · , m such that , where we define Y(0) = −∞, and 

. 

Here, we are relaxing the constraint that the initial stockpile has to be non-negative, but we will 
add it back in the end. The key observation is that given all the , we can always find a 
K0 between two adjacent Y[j]’s, Y[J−1] and Y[J], that minimize the objective function. That is, 

 
Then 

 

Therefore, the condition that  is given by 

 
Or equivalently, ∃ J = 1, 2, …, m, such that 

 
wherein if J = 1, we define 

 

 
Finally, given the non-negativity of the stockpile, if K0 < 0, then the optimal initial stockpile K0∗ = 
0, and if K0

    ≥ 0, then K0
∗  = K0

  . 
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A.2 Centralized resources allocation 
The optimization problem for allocating resources amount regions is as follows: 

 

such that  

Theorem A.2. The optimization above is done from period to period, and thus to simplify 
notation, the time indicator j can be dropped at each time point. Let X[1] ≥ …≥ X[n] > 0 be the 
decreasingly ordered sequence of X(1), X(2), ..., X(n). 

If  then 

 

If , we can find an  such that  

 

Then  

 
Proof. At each time point j, we want to solve the following optimization problem, 

 

such that  
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Case 1: Coexisting surpluses and shortages 

First, let us consider the case in which some regions are having surpluses, whereas other 
regions are experiencing shortages at the same time. We shall show below that this case is 
impossible regardless of the non-negative constraints. That is, suppose that K(1), K(2), ..., K(n) lie 
locally in a feasible set, such that I of them satisfy K(i) > X(i), where I = 1, 2, ..., n − 1. The 
remaining n − I of them satisfy K(i) ≤ X(i). Without loss of generality, assume the first I of K(i) 
are in the former group. Then the local problem becomes 

 

 such that  

The solution to this problem is given by 

 
for i = 1, 2, ..., I, and 

 
for i = I + 1, ..., n. 

However,  and , which implies 

 and , and thus we have a contradiction. This result shows that 
it is impossible for some regions to have surpluses while other regions are experiencing 
shortages. Therefore, it suffices to only consider the scenarios that there is a system-wide 
surplus and that there is a system-wide shortage. 

Case 2: System-wide surplus 

If there is a system-wide surplus – i.e., all regions have surpluses – then the problem becomes 

 

such that  
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The solution is given by 

 

For this result to hold, we only need the condition that . Due to 
uniqueness, under this condition, this K(i) is optimal. 

Case 3: System-wide shortage 

It remains to solve the case that there is a system-wide shortage; i.e., all regions have 
shortages. In that case, the problem becomes 

 

such that  

Apart from the given condition that , there are additional inequality 
constraints in this optimization problem. Hence, we make use of Karush–Kuhn–Tucker (KKT) 
conditions as follows: 

 
for all i = 1, …, n. Regarding the values of λ(i) and λ(i), we can consider the following four 
mutually exclusive cases, 

1. for some  and  for some ; 

2.  for all  and  for some ; 

3.  for some  and  for all ; 

4.  for all  and  for all . 

Each of them will be discussed as follows. 

Case 3.1:  for some  and  for some . 
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We will show that this case will lead to a contradiction, and thus is impossible. Because the 

ordering of  and  does not affect the conditions, for simplicity we rearrange them in such 
a way that there is an I = 1, 2, ..., n − 1, and an I˜ = 1, 2, ..., n − 1, for which 

 
where [i] are indices after the rearrangement. 

We also have the condition that , because for each  implies , which 

further implies . Therefore, the number of  that are equal to 0 (i.e., ) is at least 

the number of  that are greater than 0; i.e., . Then by the complementary slackness 

conditions in the KKT conditions above,  and 

. 

Then, the KKT conditions are simplified. 

 

 
from which we can observe the following contradiction that 

 

Therefore, we can conclude that if , then  or n, and its contrapositive is 

also true, which states that if  then  or n. These two statements 
correspond with the second and third cases respectively, and they are considered as follows. 

Case 3.2:  for all , and  for some . 
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As in the previous case, We use the rearranged  and , so now , for all 

, and  for all  for some . This 

implies , for all . 

In this case, the KKT conditions become 

 
By solving this system, we get 

 

By the system-wide shortage assumption, , and therefore,  for all 

. But this contradicts the assumption that  for all . 
Therefore, we can tell that this is another impossible case. 

Case 3.3:  for some  and  for all . 

Again, for this case, we use the rearranged  and  for . And we assume that 

there is an , such that  for , and  for . 

This implies , and we get the following conditions: 
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They together give us 

 

Since  for  and  for  the following 
conditions hold: 

 

 

Case 3.4:  for all  and  for all . 

Now it only remains to consider the case in which  and  for all . 

Since there is no divergence in the values of  and , rearrangement does not make a 

difference. Nevertheless, we will use the ordered indices  here for consistency. 
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In this case, conditions now become 

 

 
Solving this system gives us 

 

Since we assume there is a system-wide shortage, , and thus we get 

 for all . Then, the only required condition for this result to hold is 

 for all  which gives us 

 

This result can actually be seen as a special case of Case 3.3, where , and therefore we can 
combine the results from these two cases. 

In summary, the result depends on whether there is a system-wide surplus or shortage. In the 
event of a system-wide surplus (i.e.,  for ), the optimal allocation in each 
region is given by 

 

In the event of a system-wide shortage (i.e.,  for ), it has been 

demonstrated that the solution can be found by sorting  in such a way that the first 
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 of them are greater than 0. If  is 0, then all . The  here should 

satisfy the following conditions,  

 

where if , then the first inequality can be discarded. Once  is identified, the optimal 

allocation in each region is given by  

 

Since  are sorted, the final result should have been re-sorted accordingly. However, the 

conditions are the same regardless of the ordering. Finally, we relabel  and  for the sake 
of simplifying the notations in the main text, and hence  should be sorted in descending 
order instead. 
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Appendix B: Parameter Values in Numerical Examples 
This section offers an inventory of all model parameters used in earlier sections. The same sets 
of parameters are used for all calculations in the three-pillar framework. 

Table 4: Demand assessment parameters; values are chosen in the  
ranges provided in Tables 2 and 3 

Parameter Value 

Percentage of intensive care patients 
requiring ventilators (class I3) 

0.9 

Units of PPE required per exposed patient 
(class E) 

5 

Units of PPE required per hospitalized patient 
(class I2) 

15 

Units of PPE required per intensive care 
patient (class I3) 

20 

Table 5: Ventilator planning parameters (Porpora, 2020; Rowland, 2020; Patel, 2020) 

Parameter Value 

Participating states New York, Florida, California 

Cost of possession per unit per day (cj) 1 

Initial stockpile cost per unit (c0) 25,120 

Daily production rate (a) 10 units 

Shortage/surplus cost  in Figure 8a 1,000/1,000 

Shortage/surplus cost  in Figure 8b 1,000/20 

Time-varying weight  Proportional to daily demand Xj 
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Table 6: PPE planning parameters 

Parameter Value 

Participating states New York, Florida, California 

Cost of possession per 1,000 units per day (cj) 0.01 

Initial stockpile cost per 1,000 units (c0) 0.5 

Daily production rate (a) 50,000 units 

Shortage cost (θ+) 1 

Time-varying weight (ωj) Proportional to daily demand Xj 

Table 7: Ventilator/PPE allocation parameters 

Parameter Value 

Participating states New York, Florida, California 

Shortage/surplus cost  1 

Weight for resources allocation in region i at 
time j (ω(i)) 

Proportional to m 
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