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Highlights of

LRMoE.jl: a software package for insurance loss modelling using a
mixture of experts regression model

and

LRMOoE: an R package for flexible actuarial loss modelling using a
mixture of experts regression model

In recent years, we at the University of Toronto (Andrei L. Badescu, X. Sheldon Lin, and
current and former PhD students) have been working on research projects on ratemaking
and reserving for property/casualty (P&C) insurance. Our goal is to develop new and
implementable technologies and ready-to-use software packages for actuaries in this area.
This project is one of the results of these efforts. It was funded by an Academic Research
Grant from the Canadian Institute of Actuaries (CIA), which we gratefully acknowledge.

In this project, we introduce new open-source statistical software tailor-made for actuarial
applications which allows actuarial practitioners to model and analyze insurance loss
frequencies and severities using a nonlinear multivariate regression model. The model is
very flexible, and it can fit any type of positive dataset and capture the dependency
structure implied by the data, and is statistically implementable.

Two papers with corresponding software packages are produced: a vignette for an R
package and the other for a Julia package. R is known by many actuaries, while Julia is a
highly efficient programming language that has been widely used by the machine learning
and computer science community. The Julia package runs roughly four times faster than the
R package. The packages can be downloaded at https://github.com/sparktseung/LRMoE.jl
and https://github.com/sparktseung/LRMoE, respectively. They offer distinctive features
which cannot be achieved using existing software packages. Key features include a wider
coverage on frequency and severity distributions and their zero-inflated versions, parameter
estimation under data censoring and truncation, and a collection of insurance ratemaking
and reserving functions. The packages also provide several model-evaluation and model-
visualization functions to help users easily analyze the performance of the fitted model and
interpret the model in insurance contexts.

The underlying model and methodology developments of our software packages can be
found in the following papers:

e Fung, T.C, Badescu, A., and Lin, X.S. (2019). “A class of mixture of experts models for
general insurance: Application to correlated claim frequencies.” ASTIN Bulletin,
49(3), 647-688.

e Fung, T.C, Badescu, A. and Lin, X.S. (2019). “A class of mixture of experts models for
general insurance: Theoretical developments.” Insurance: Mathematics and
Economics, 89, 111-127.

e Fung, T.C, Badescu, A., and Lin, X.S. (2020). “A new class of severity regression
models with an application to IBNR prediction.” North American Actuarial Journal,
25(2), 1-26.



e Fung, T.C, Badescu, A., and Lin, X.S. (2021). “Fitting censored and truncated
regression data using the mixture of experts models.” Available in SSRN:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=3740061.

These papers are available upon request. If you have any comments, questions, or feedback,
please contact either of us.

Andrei L. Badescu and X. Sheldon Lin
University of Toronto
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LRMOoE.jl: A package for insurance loss modelling using a
mixture of experts regression model

Abstract

This paper introduces a new Julia package, LRMOE, statistical software tailor-made for
actuarial applications which allows actuarial researchers and practitioners to model and
analyze insurance loss frequencies and severities using the Logit-weighted Reduced Mixture
of Experts (LRMoE) model. LRMOoE offers several new distinctive features which are
motivated by various actuarial applications and mostly cannot be achieved using existing
packages for mixture models. Key features include a wider coverage on frequency and
severity distributions and their zero inflation, the flexibility to vary classes of distributions
across components, parameter estimation under data censoring and truncation, and a
collection of insurance ratemaking and reserving functions. The package also provides
several model evaluation and visualization functions to help users easily analyze the
performance of the fitted model and interpret the model in insurance contexts.

Keywords: Multivariate regression analysis, censoring and truncation, Expectation-
Conditional-Maximization Algorithm, insurance ratemaking and reserving, Julia.

1. Introduction

The Logit-weighted Reduced Mixture of Experts (LRMoE) model is a flexible regression
model introduced by Fung et al. (2019b), which is regarded as the regression version of a
finite mixture model with the mixing weights (called the gating function) which depend on
the covariates. We may interpret the LRMOoE as clustering policyholders into different
subgroups with varying probabilities. Conditioned on the subgroup component to which
each policyholder is assigned, the distributional properties of loss frequency or severity are
governed by mixture component functions (called the expert function). Model flexibility,
parsimony, and mathematical tractability are justified (see Fung et al. 2019b),
demonstrating a sound theoretical foundation of LRMoE in a general insurance loss
modelling perspective. Considering some specific choices of expert functions, Fung et al.
(2019a) and Fung et al. (2020) construct Expectation-Conditional-Maximization (ECM)
algorithms for efficient frequency and severity model calibrations and show the potential
usefulness of LRMoE in terms of insurance ratemaking and reserving.

While the existing R package flexmix (Leisch 2004, and Griin and Leisch 2008) may perform
parameter estimation for some special cases of LRMOE, it offers only limited choices of
component functions (Poisson, Gaussian, Gamma, and Binomial) for model fitting. Miljkovic
and Griin (2016) have used its extensibility feature to prototype new mixture models with
alternative component functions (such as Lognormal, Weibull, and Burr), but users are still
constrained to choosing a single parametric distribution for all the components.

This paper introduces a new package in Julia language, LRMOE, statistical software tailor-
made for actuarial applications which allows actuarial researchers and practitioners to
model and analyze insurance loss frequencies and severities using the LRMoE model. The
package offers several new distinctive features which are motivated by various actuarial
applications and generally cannot be achieved by existing packages, including:



Fast fitting: With the increasing need to analyze large insurance datasets with
hundreds of thousands of observations, it is crucial that a statistical package can fit
models within a reasonable time frame. Compared with traditional languages such as
R, our implementation in Julia significantly shortens the run time, allowing users to
obtain and analyze results much faster (see Section 4.1 for comparison).

Wider coverage on frequency and severity distributions: Apart from the severity
distributions covered by Miljkovic and Griin (2016), the package also covers more
frequency expert functions important for actuarial loss modelling, including negative
binomial distribution and Gamma-count distribution.

Zero-inflated distributions: Often actuaries are more interested in analyzing the
aggregate loss for each policyholder instead of considering frequency and severity
separately. In this situation, it is common practice to observe excessive zeros, which
motivates the use of zero-inflated expert functions in the LRMoE, which is offered in
this package. Note that efficient computation of zero-inflated LRMoE requires
defining an additional latent variable (see Section 2.2 for details), further hindering
the effectiveness of using the extensibility feature of flexmix.

Package extensibility: In addition to providing a wide coverage of distributions, our
package also allows users to define their customized expert functions with simple
guidance from the package documentation. Hence, the package can be used not only
within the actuarial community, but also in a wider range of research and practical
problems.

Varying classes of distributions across components: Insurance loss data may exhibit a
mismatch between body and tail behaviours, which should be captured using
different distributions. One approach is to choose two distributions and combine
them using a peaks-over-threshold method (see, for example, Lee et al. 2012, and
Scollnik and Sun 2012). Another is to consider a finite mixture model based on
different component distributions (see, for example, Blostein and Miljkovic 2019).
The LRMoE package is similar to the latter, and users can select different expert
functions across different mixture components, which allows for more flexible and
realistic modelling of data.

Incomplete data: In many actuarial applications, including reinsurance, operational
risk management, deductible ratemaking, and loss reserving, censored and truncated
data are often observed and need to be dealt with. Censoring and truncation of
LRMOoE is introduced by Fung et al. (2021) with the expert functions restricted to
univariate Gamma distribution. The new package removes such restriction by
offering users the versatility to fit randomly censored and truncated multivariate
data with many choices of expert functions.

Model selection and visualization: In addition to the model-fitting function, the new
package also provides several model-evaluation (AIC, BIC) and model-visualization
(e.g., latent class probabilities, covariate influence) functions to help users easily
analyze the performance of the fitted model and interpret the fitted model in the
insurance context.



e Insurance ratemaking and reserve calculation: The package further contains a
number of pricing and reserving functions (e.g., mean; variance; value-at-risk, or
VaR; conditional tail expectation, or CTE), which enable actuaries to simultaneously
perform ratemaking to multiple insurance contracts with different characteristics,
based on abundant choices of premium principles.

The paper is organized as follows. Section 2 reviews the LRMoE model and parameter
estimation using the ECM algorithm. In Section 3, we use a simulated dataset to
demonstrate the basic fitting procedure in the LRMoE package. Section 4 contains more
package utilities, such as parameter initialization, model visualization, and pricing function,
which are illustrated using a French auto insurance dataset. The paper is concluded with
some remarks in Section 5. For brevity, we only present code lines which are the most
relevant to our new package. The source code, package documentation, and complete
replication code for all examples in this paper are available at
https://github.com/UofTActuarial/LRMoE.jl and
https://uoftactuarial.github.io/LRMoE.jl/dev/. Further, we have developed a corresponding
R package (accelerated by Rcpp) for fitting LRMoE with similar functionalities for users
interested in running the package in R instead. We refer such readers to Tseung et al. (2021)
for the vignette, and https://github.com/UofTActuarial/LRMoE for the code and
documentations.

2. LRMoE Model and Parameter Estimation

In this section, we provide a brief overview of the LRMoE model proposed in Fung et al.
(2019b), and discuss the ECM algorithm for parameter estimation. For brevity of
presentation, we will assume, in sections 2.1 and 2.2, that all response variables (claim
frequency or severity) are observed exactly. In Section 2.3, we will address data truncation
and censoring for the LRMoE model.

2.1 Logit-weighted Reduced Mixture of Experts

e — (e T
Let Ti = (Ti0s Tits - - - - 'iP)" denote the (P +1)-dimensional covariate vector for
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Policyholderi(i=1,2, ..., n) with intercept *i0 = l, and¥i = Wit: Vi2. . UiD)" denote
the D-dimensional vector of their response variables, which can be either claim frequency or
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severity. Let X = (@1, @2,... ) Tang ¥ = Wi 02.... Yn)" denote all covariates and
responses for a group of n policyholders.

Based on the covariates, Policyholder i is classified into one of g latent risk classes by a logit-
gating function
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the d-th dimension probability density function (or probability mass function) of yiq is given
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for modelling insurance losses. Table 1 gives a list of parametric
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distributions supported by the LRMoE package. Note that a probability mass 74 at zero
allows for more realistic modelling of insurance data which usually exhibit excess zeros. As a

naming convention, we will refer to gjs as a component distribution/expert function, and fis

as its positive part, although claim frequency distributions (e.g., Poisson) also have some

probability mass at zero.

Table 1: Distributions Supported by LRMoE

Root Distribution fia(v) Parameters
Gamma Gamma yml(m!/m le—v/0 m>0,0>0
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Under LRMOoE, the conditional probability density function (or probability mass function) of
5 yi given covariates x; is
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by component and by dimension. Note that ag = (0,0,..., 0) ensures that the model is

identifiable; that is, there is a one-to-one mapping between the regression distributions and
the parameters (see Jiang and Tanner 1999, and Fung et al. 2019a). Note that the total
number of parameters of the model is given by
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2.2 Parameter Estimation

For parameter estimation in finite mixture models, the Expectation-Maximization (EM)
algorithm is commonly used (see, for example, Dempster et al. 1977, and MclLachlan and
Peel 2004). However, for the LRMoE model, the M-step requires maximization of a non-
concave function over all elements of a. Fung et al. (2019a) thus use the ECM algorithm
(Meng and Rubin 1993), which breaks the M-step into several substeps. The ECM algorithm
implemented in the LRMOoE package is described as follows.

Denote P =(a,s,%) as the parameters to estimate. Fori =12,..., " we introduce a
latent random vector Zi = (Zi1: Zig.. ... Ziy).l.,where Zij =1 if Yi comes from the j-th
component distribution and Zi; =0 otherwise. For d=1,2,..., D, we further write
Zij = Zijao + Z'jd] , where Zijdo =0 44 Zijd1 = 1 if the d-th dimension of y; comes

fid Zijao = 1 Zijar =0

from the positive part of the j-th component, and and if it comes

from the zero inflation (sj". The complete-data loglikelihood function is given by
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In the CM-step, we aim to maximize ), which can be decomposed
into three parts as
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To maximize Qa , we use the same conditional maximization as described in Fung et al.
(t—1)
(2019a). We first maximize it with respect to a1 with a; fixed at @; , for
) — 9 © o
J=23,...,9-1 . The next step is to maximize with respect to a; with updated a? and
i oV | = 3,4 g—1 - i :
othera;fixedat 7  forJ = <% .- 9 . The process continues until all a’s have
(t)
been updated. For obtaining each Q; , the Iteratively Reweighted Least Square (IRLS)
approach (Jordan and Jacobs 1994) is used until convergence.
~(t)

(S d
For Qs ,each " can be updated using the following closed-form solution

n L)
(1) Lai=1 *ijd0 ‘
0jd = () RS (13)
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P

The maximization of Q" can also be divided into smaller problems by component j and by

dimension d. Foreach 7 = 1:-- Yandd =1,..., D, the problem is reduced to maximize
a weighted loglikelihood of an expert function where the weights of each observation are

given by z% jian- FOT updating each ([1% therefore, closed-form solutions are only available
for very special distributions (e.g., Poisson, Lognormal). Numerical optimization is used in
most cases, especially when the observation y/’s are not observed exactly (see Section 2.3).

As discussed in McLachlan and Peel (2004), a mixture of severity distributions may have
unbounded likelihood, which leads to spurious models with extremely large or small
parameter values. In the LRMoE package, we adopt the same maximum a posteriori (MAP)
approach as in Fung et al. (2020), which uses appropriate prior distributions to penalize the
magnitude of fitted parameters (see Section 3). The rationale of including penalty functions
is to avoid obtaining spurious models due to the unbounded nature of the loglikelihood
function. The penalty itself should be small enough so that it results to negligible impacts on
the fitted model. On the other hand, the penalty functions avoid parameters diverging to
unreasonable values so that the fitted model would become more robust.
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For more details regarding the rationales and executions, readers are recommended to refer
to Section 4 of Fung et al. (2020).

2.3 LRMoE with Censoring and Truncation

Censoring and truncation are common in insurance datasets and need to be dealt with. For
example, when a policy limit is applied, loss amounts above the limit will be recorded as the
limit only, which creates right censoring of the complete loss data; when a policy deductible
is applied, loss amounts below the deductible are not reported to the insurer, thus leading
to left truncation.

Fung et al. (2021) have discussed the LRMoE model with censoring and truncation, where all
component distributions are Gamma. For parameter estimation with data censoring and
truncation, the ECM algorithm in Section 2.2 is slightly modified, with an additional E-step to
remove the uncertainties arising from censoring and truncation. Since the main purpose of
this paper is to demonstrate the application of the LRMoE package, we will omit the details
and refer interested readers to the cited paper.

For all distributions included in it, the LRMOE package can perform parameter estimation in
the presence of data truncation and censoring. Consequently, the user’s input is slightly
different from existing packages for mixture models. A detailed example on model fitting in
our package is given in Section 3.

2.4 Ratemaking and Reserving in LRMoE

The model structure of LRMoE allows for easy computation of quantities relevant to
actuarial ratemaking and reserving (see Fung et al. 2019b). At the policyholder level, the
moments and common measures of dependence (e.g., Kendall’s tau and Spearman’s rho) of
yi can be computed in simple forms. The VaR and CTE can also be numerically solved
without much difficulty. Various premium principles can be applied to price insurance
contracts, including pure premium, standard deviation (SD) premium, limited expected
value (LEV), and stop-loss (SL) premium. Risk measures can also be calculated for each
individual policyholder (e.g., 99%-VaR). At the portfolio level, simulation can be conducted
to obtain the distribution of the aggregate loss of all policyholders, which is useful for
calculating the total loss reserve and premium calculation. The simulation process is
facilitated by a data simulator included in our package (see Section 4.4).

3. Example: Simulated Dataset

In this section, we will demonstrate how to fit an LRMoE model using a simulated dataset
which accompanies the package. The package and dataset can be installed and loaded as
follows.

# Install and load package

> using Pkg, JLD2

> Pkg.add(url="https://github.com/UofTActuarial/LRMoE.jl")
> using LRMoE

# Load demo data

> @load "X _obs.jld2" X _obs
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> @load "Y obs.jld2" Y obs

To address data truncation and censoring, the user’s input of response Y is different from
existing packages. For each dimension d of observation yi, instead of a single numeric input,
) U

l l u u X f .
0=t = Yia = Yia = tia = Xjs needed, where "idand 0 are the lower

i “id

a quadruple
l u

and upper bounds of truncation, and “id and Y are the lower and upper bounds of

censoring. The exact value of Yid |ies between censoring bounds such that

l ) u
Yid < Yid < Yid, For a sample of size n, an n x (4D)-matrix is needed, where each n _ 4-
block describes one dimension of Y.

Sample rows of Y_obs in the demo dataset are shown as follows. These rows of data
illustrate three possible scenarios of data truncation or censoring. For the first row, both
dimensions of yi are observed exactly without truncation, so

l l l l
tin = tio =0, Y31 = Y1 = Vi1, Yio = Yio = Yi2 qnq tin = tio =
For the second row, the second dimension of yi is truncated at 5 (e.g., by imposing a policy

I _
deductible) but not censored, so ti2 = . For the third row, the second dimension of yi is

Ui
right-censored at 100 (e.g., by applying a policy limit) and the exact value of Yi2 is
l
1o = 100 U —

unknown, so Yi2 and Yi2 x.

>Y obs[[1,6003,7847],:]

3 x 8 DataFrame

Row T 1 Y1 Yu 1 Tu 1 Tl 2 Yl 2 Yu 2 Tu 2
1 0.0 6.0 6.0 Inf 0.0 89.0332 89.0332 Inf

2 0.0 8.0 8.0 Inf 5.0 37.4133 37.4133 Inf

3 0.0 7.0 7.0 Inf 0.0 100.0 Inf Inf
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Table 2: Description of Demo Dataset

Covariate?! Name Description

;50 intercept Constant 1

;1 sex 1 for male, 0 for female

€I';9 agedriver Driver’s Age: 20{80

€Ir;3 agecar Car’s Age: 0{10

T4 region 1 for urban, O for rural
Response Name Description

Uil Y[,1] Claim count from business line 1
Yi2 Y[,2] Claim severity from business line 2
Row Index Y[,1] Y[,2]

1-6000 No censoring or truncation | No censoring or truncation
6001-8000 No censoring or truncation | Left-truncated at 52
8001-10000 No censoring or truncation | Right-censored at 100

L All covariates are generated independently and uniformly at random.

2The complete dataset (X, Y) contains 10,000 rows. As a result of left-truncating Y[,2], 163 rows of data are

discarded, and the observed dataset (X_obs, Y_obs) has 9,837 rows only.

Table 3: True Model of Demo Dataset

Logit Regression Coefficients:

—0.50 1.00 —-0.05 0.10 1.25
o =
0 0 0 0 0

Component Distributions:

j: 1 j= 2
d=1 Poisson ZI-GammaCount

(A=6) ((5 =020, m = 3,8 =0.90)
d=2 InverseGaussian

LogNormal (1t = 4.0,0 = 0.30)

(1 = 20.0, A = 20.0)

Table 4: Fitted Model 1 of Demo Dataset

Logit Regression Coefficients:

—0.4318 1.0688

—0.0502 0.0951 1.1967

o =
0 0 0 0 0

Component Distributions:

j=1 j=2
d=1 Poisson ZI-GammaCount

(A =6.016) (6 = 0.206, m = 29.956, s = 0.489)
d=2 LogNormal InverseGaussian

(1t = 4.001, 0 = 0.297) (1 = 20.304, A = 21.756)
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Table 5: Fitted Model 2 of Demo Dataset

Logit Regression Coefficients:
. —0.4023 1.0643 —0.0499 0.0955 1.1788
o =
0 0 0 0 0
Component Distributions:
j: 1 j= 2
d=1 ZI-Poisson ZI-Poisson
(0 =0.003. A = 6.103) (6 = 0.206, A = 30.585)
d=2 Burr Gamma (l' = 1624 (‘) = ].2398)
(k=1.309,¢ = 5.232, A = 58.799)

To fit an LRMoE model, the user only needs to minimally specify the following: initial guess
of logit regression coefficients (alpha_init) and what component distributions to use for
each dimension and each component, as well as an initial guess of their parameters
(comp_init).

For illustration purposes, we first assume that the user’s choice of component distributions
coincides with the true model, and the initial guesses of parameters are also close to the
true ones. The following sample code provides an example. With two components and five
covariates, the initial guess alpha_init is a 2 x 5-matrix, where entries of zero indicate a non-
informative guess. As for the component distributions, comp_init is a 2 x 2 matrix; here the
number of rows (or columns) corresponds to the number of components (or dimension of
response). Each entry of comp_init indicates a choice of expert function. In this case, yi1 is a
mixture of Poisson with mean A = 10.0 and zero-inflated Gamma-count distribution with
zero inflation & = 0.50, shape parameter m = 40, and dispersion parameter s = 0.80.
Similarly, yi> is a mixture of LogNormal(u = 3.0, o0 = 1.0) and InverseGaussian(u = 15.0, A =
15.0).

# Assume a non-informative guess

alpha_init = fill(0.0, 2, 5)

# Correctly specified component distributions

model_init = [PoissonExpert(10.0) ZIGammaCountExpert(0.50, 40, 0.80);
LogNormalExpert(3.0, 1.0) InverseGaussianExpert(15.0, 15.0)]

The fitting function of LRMoE can be called as follows, which will return a fitted model as
well as loglikelihood and information criteria AIC and BIC. The result can be inspected by a
summary() function, or by standard Julia methods.

# Call fitting function
result_1 = fit LRMoE(Y_obs, X_obs, alpha_init, model_init)

# Result summary
summary(result_1) Model: LRMoE
Fitting converged after 7 iterations
Dimension of response: 2

Number of components: 2
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Figure 1: Fitting results of DemoData
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PoissonExpert(6.01676) ZIGammaCountExpert(0.206196, 29.9564, 0.488854)
LogNormalExpert(4.00105, 0.296734) InverseGaussianExpert(20.3037, 21.7569)

The fitted model is summarized in Table 4. The parameter estimates are quite close to the
true ones. Considering simulated random noises and loss of information due to censoring
and truncation, the fitting function is able to identify the true model when it is known.

In practice, when the true underlying model is not known, the user needs to perform some
preliminary analysis on the dataset to determine model specification and parameter
initialization. Table 5 contains the parameter estimates of another user-specified LRMoE
model for the demo dataset, which has quite different component distributions compared
with the true model.

The fitted loglikelihood values for Model 1 and Model 2 are -73147.35 and -74491.24,
respectively. A graphical comparison of the two models is given in Figure 1. While both
models have similar fitting performance for claim severity, Model 2 is noticeably worse in
fitting small and extreme values of claim frequency.

4. Example: Real Dataset

In this section, we illustrate how to fit an LRMoE model to a real insurance dataset. As the
basic fitting procedure has been discussed in the previous section, we will focus on other
utilities of our package, including parameter initialization, model uncertainty, simulation,
actuarial pricing functions, and model visualization.

4.1 Dataset and Computation Time

Throughout this section, we will use a French auto insurance claims dataset, freMTPLfreq
and freMTPLsev, included in the R package CASdatasets (Dutang and Charpentier 2019).
Exploratory analysis and data-cleaning procedures can be found on the accompanying
website of our package. The cleaned dataset has 412,609 observations. The claim amount
has high zero inflation, as less than 4% of policyholders have filed at least one claim. For
positive claim amounts, the distribution is right-skewed, multi-modal, and heavy-tailed. The
covariates used for modelling are described in Table 6.

Before proceeding, we remark on the computational time of our package. Compared with
the demo dataset in Section 3, analyzing freMTPLfreq and freMTPLsev resembles a realistic
actuarial modelling problem with many covariates and observations. In such a case, the Julia
programming language is significantly more advantageous compared with traditional
statistical languages such as R. Some standard benchmarks can be found on
https://julialang.org/benchmarks/. Our experience confirms Julia’s better performance: it
takes around 20 hours in R (with optimization in Rcpp) to fit a model in this section, while
Julia takes less than five hours to complete the same procedure.

For the corresponding R packages which we have developed, we refer readers to Tseung et
al. (2021).

4.2 Parameter Initialization

Since the fitting procedure of LRMoE involves multivariate optimization, a good initialization
of parameters will often lead to faster convergence, compared with a non-informative
guess.
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Table 6: Description of French Auto Insurance Data

Covariate Name Description
. 1. Default class f ical
;0 Intercept Cor?stant efault class for categorica
variables
L1 CarAge Vehicle age in years. Range: 0 ~ 100
L42 DriverAge Driver’s age in years. Range: 18 ~ 99

Power of the car as ordered categorical:

d ~ O Default is “d”

Brand of the car: 7 categories. Default is
“Fiat”

Car gas: Diesel or Regular. Default is
“Diesel”

Policy region in France: 10 categories.
Default is “Aquitaine”

Response Name Description

;3 ~~ .1'1'_13 Power

Lj14 ~ ;19 |Brand

T3 20 Gas

L7921 ~~ L7929 | Region

Yil ClaimAmount Claim amount of the policyholder

Gui et al. (2018) have proposed an initialization procedure for a fitting mixture of Erlang
distributions, which involves k-means clustering and the clusterized method of moments
(CMM). This has been used in Fung et al. (2020) and offers reasonably good starting values
of parameters.

Our package contains an initialization function which applies the CMM method to all
component distributions. Some preliminary analysis is needed to determine the number of
clusters (components) to use. Since the positive part of all distributions included in our
package is unimodal, a heuristic starting point is to examine the empirical histogram of data
and count the number of peaks (see Figure 3).

As an example, the procedure to initialize a three-component LRMOoE is given as follows. The
user needs to input response Y and covariate X, as used in the fitting function. In addition,
the third argument 3 corresponds to the number of components, while the last argument
["continuous"] indicates that the response Y is 1-dimensional and continuous. For the demo
dataset used in Section 3, the input would be ["discrete" "continuous"].

# Initialize a 3-component model
init_3 =cmm_init(Y, X, 3, ["continuous"])

The cmm_init function will return a list of parameter initialization. For the logit regression
coefficients, we assume a non-informative guess on covariate influence, resulting in zero
coefficients on all covariates. The user is free to incorporate prior knowledge by
modification afterwards. The relative size of each cluster is reflected by the intercept terms.
In the following initialization, the size of three latent clusters is proportional to (e™141667,
e728687 e0.0): that is, the proportion of these clusters within the entire dataset is given by
(0.3842, 0.0330, 0.5827).

> init_3.alpha_init

3 x 30 Array{Float64,2}:

17



-1.41667 0.0 0.0 .. 0.0
-2.8687 0.0 0.0 .. 0.0
0.0 0.0 0.0 .. 0.0

As for the parameters of component distributions, for each dimension of Y we will apply the
CMM method to obtain initialization for all types of expert functions. A summary of all
initialization is given in Table 7. The initialization function cmm_init also returns summary
statistics (mean, coefficient of variation, skewness, and kurtosis), which helps with choosing
what combination of expert functions to use. Initialization with extremely large or small
parameter values could result in a spurious model or bad fit, and should thus be avoided.

The cmm_init function also returns two suggested models based on the highest
loglikelihood (Il_best) and the best Kolmogorov—Smirnov test (ks_best). For example, the
model initialization with the highest loglikelihood is given by the following.

> fnit_3.ll_best

1 x 3 Array{ZILogNormalExpert{Float64},2}:
ZILogNormalExpert{Float64}(0.960674, 6.89627, 1.05169)
ZlLogNormalExpert{Float64}(0.961532, 6.819891, 1.097471)
ZlLogNormalExpert{Float64}(0.958489, 6.80334, 1.09848)

4.3 Fitting Results and Model Selection

For illustration purposes, we fit only a selected number of LRMoEs to the entire French auto
insurance dataset. The fitted loglikelihood, AIC, and BIC are summarized in Table 8. In most
cases, adding more components will increase the fitted loglikelihood (e.g., consider models
iwl, will, and wllil). The models selected by AIC and BIC have six and five components,
respectively. In this particular setting, BIC heavily penalizes models with more components,
since the sample size is large, and adding one component roughly increases the number of
parameters by 30 (the number of logit regression coefficients).

Apart from AIC and BIC, cross-validation (CV) is an alternative model-selection criterion
which avoids overfitting with too many latent components. For example, Gui et al. (2018)
consider a 10-fold CV for a fitting mixture of Erlangs, where the averaged loglikelihood on
the test sets is used as a score function to select the optimal number of components. CV can
be implemented with the help of parallel computing in Julia (see also Section 4.5).

4.4 Pricing and Reserving Functions

Our package contains a collection of functions related to actuarial pricing, reserving, and risk
management, including calculation of mean, variance, VaR, CTE, LEV E[(Y A u)], and SL
premium E[(Y - d).] of the response variable. These functions start with root predict_,
followed by appropriate quantities of interest (mean, var, VaR, CTE, limit, excess) and
corresponding function arguments.

As an illustration, we consider three policyholders in Table 9, where A has no claim history,
B has a medium-sized claim, and C has a large claim. Below is the sample code to calculate
different quantities of interest.
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# Mean of claim amount of Policyholders A, B and C.
> predict_mean(X[[1, 33, 96],:], alpha_fit, comp_fit)
[52.859, 52.577, 56.368]

Table 7: Sample Initialization of Parameters

Component 1 2 3

Proportion 0.3842 0.0330 | 0.5827

Zero Inflation 0.9615 0.9584 | 0.9607

Positive Data:

- Mean 1686.01 | 1622.73 | 1680.57

) \Sgif:(';”wf 2.51 250| 207

- Skewness 12.15 13.57 11.61

- Kurtosis 185.67 230.49 | 183.04
- Parameter
Initialization

Gamma k 0.16 0.16 0.23

A 10616.28 | 10146.28 | 7231.11

LogNormal H 6.82 6.80 6.90

o 1.10 1.10 1.05

Inverse Gaussian 1 1868.01 | 1622.73 | 1680.57

A 267.76 259.53 | 390.58

Weibull? k 1.00 1.00 1.00

{) 1686.01 1622.73 | 1680.57

Burr! k 351.85 126.52 40.00

c 0.88 0.90 0.97

A 1218490 317504 69819

1Since the moments cannot be written in closed form, these parameters are solved by maximizing
loglikelihood based on the observation in clusters.

19



Table 8: Fitting Results of French Auto Insurance Data

g=3 Loglikelihood AIC BIC g=4 Loglikelihood AIC BIC
lll (69) 190010 | 380157 | 380991 | l'(')g) 189676 | 379558 | 380684
lb(70) | -190192 | 380524 | 381289 | Il (102) | -189884 | 379973 | 381087
iwl(69) | -190110 | 380358 | 381112 | IlI(102) | -190008 | 380220 | 381335
Ib(70) | -190202 | 380545 | 381310 (1""0'2) 190057 | 380319 | 381445
wil(69) | 190225 | 380588 | 381342 | lb(')';) 190109 | 380422 | 381537
g=5 | Loglikelihood AIC BIC g=6 | Loglikelihood AIC BIC
Ii(135) | -189323 | 378916 | 380392 (ygg) -189268 | 378872 | 380708
Wil (135) | -189662 | 379594 | 381070 (Tglg) 189441 | 379220 | 381067
bllil liwlll
189696 | 379663 | 381150 189939 | 380214 | 382050
(136) (168)
bwliw 189767 | 379805 | 381292 | ™I 190235 | 380805 | 382642
(136) (168)
willil 189903 | 380076 | 381551 | Wbl 190276 | 380890 | 382738
(135) (169)

Notes: Component distributions are represented by first letter; for example, | for lognormal, b for Burr. All
components are zero-inated. The number in brackets is the total number of parameters. Stopping criterion is <
0:05 improvement in loglikelihood, or 500 iterations. For each g, loglikelihood values are in decreasing order.
The overall optimal values are bolded.

#99% VaR of claim amount of Policyholders A, B and C.

> predict_VaR(X _obs[[1, 33, 96],:], alpha_fit, comp_fit, 0.99)

Table 9: Selected Policyholders in French Auto Insurance Dataset

Claim ID Car Age | Driver’s Car Brand Gas Region
Age Power
A 0 1 0 46 g JK Diesel A
B 302 33 1 64 g JK Regular IF
C 9924 96 0 51 j JK Regular IF
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Table 10: Pricing Calculation for Selected Policyholders in French Auto Insurance Dataset

Policyholder Premium Principle A B C
Prior | Posterior | Prior | Posterior | Prior | Posterior
Individual- | E[Y] 52.86 | 51.99 52.58 | 215.42 56.37 | 200.28
level E[(Y —1000)4+] |29.83 | 29.29 28.51 | 149.53 30.44 | 145.76
ED' A 1()()()()()'\ 39.22 | 38.46 39.67 | 162.63 43.15 | 140.00
Portfolio- | VaR(90) 55.89 | 54.99 55.59 | 227.83 59.60 | 211.81
level VaR(95) 57.20 | 56.28 56.90 | 233.16 61.00 | 216.77
CTE(70) 55.77 | 54.87 55.48 | 227.34 59.47 | 211.36
CTE(80) 56.59 | 55.68 56.29 | 230.69 60.35 | 214.46
CTE(90) 58.04 | 57.10 57.73 | 236.59 61.89 | 219.95

Notes: (for portfolio-level premium principles, the allocation is based on the relative size of pure premium,

v = E[Y})/ Y, E[Y)]

2 v
where the weight for Policyholder i is J1 . For each policyholder and premium
principle, the calculation is done based on both prior probability (left column) and posterior probability (right
column))

[1198.970, 1195.295, 1204.096]

# Mean excess of claim amount (d=1000) of Policyholders A, B and C.
predict_excess(X_obs[[1, 33, 96],:], alpha_fit, comp_fit, 1000)
[29.825, 28.512, 30.435]

Actuarial pricing calculation can be done based on either individual loss distributions or the
aggregated loss distribution of the entire portfolio. Both can be achieved using built-in
functions in our package.

On the individual level, the functions above can be called directly to calculate the pure
premium E[Y], as well as the premium value in the presence of a policy deductible (E[(Y -
d)+]) or policy limit (E[(Y A u)]). The first part of Table 10 summarizes the premium
calculation for policyholders A, B, and C, based on individual-level premium principles.

On the portfolio level, the sim_dataset function (see also Section 4.6) will simulate one
response value (i.e., claim amount) for each individual policyholder, which can be summed
up to the aggregated portfolio loss under one possible scenario. Repeated simulation of the
entire portfolio will produce the empirical distribution for the aggregated loss. The VaR and
CTE of the aggregated loss can be obtained from the simulated sample, which are useful for
setting the insurer’s total reserve. In addition, the VaR and CTE can be allocated back to
policyholders as a loaded premium, according to some weighting scheme which reflects
policyholders’ relative riskiness (e.g., relative magnitude of their pure premium). The second
part of Table 10 summarizes the premium calculation for policyholders A, B, and C, based on
portfolio-level premium principles.

4.5 Parameter Uncertainty

In addition to obtaining point estimates of model parameters, it is crucial to also calculate
their confidence intervals in order to identify significant parameters. Given that the
loglikelihood in Equation (4) becomes much more complicated when data are truncated
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and/or censored, analytically deriving the variance and confidence intervals of parameter
estimates would not be feasible, and could be subject to numerical issues in
implementation.

Instead, we can use bootstrapping methods in Griin and Leisch (2004). A straightforward
nonparametric bootstrapping algorithm is described as follows:

1. Fit an LRMOoE using the original dataset, and obtain an estimate o

2. For afixed number of total iterations, say 200, sample with replacement from the
original dataset, on which to fit an LRMoE again with the same component
distributions.

3. The estimates ® 1, @ 2,..., ® 200 from the bootstrapped samples will provide an
estimate of the variance of parameters.

The algorithm above can be easily implemented in parallel in Julia as follows. We have
included the estimated confidence intervals in the Appendix, calculated based on 200
bootstrapped samples.

> using Distributed
> @Distributed for iin 1:200
result = fit LRMoE(Y, X, alpha_init, model _init)
@save "result_"*"S(i)"*".JLD2" result # save the result end
4.6 Model Simulation

In the LRMOE setting, the loss distributions of policyholders are mixtures of the same expert
functions, but with potentially different mixing weights. Consequently, the distribution of
the aggregate loss, as a sum of individual losses, usually do not admit a simple form.

Our package contains a dataset simulator, which helps with analyzing the distribution of
aggregated loss. Given a portfolio of policyholders X and a model specification alpha and
comp_dist, the simulator will return one set of random realization of losses for each
policyholder.

> sim_dataset(alpha, X, comp_dist)

With multiple calls to sim_dataset, an approximation of the aggregated loss can be
obtained. This has been applied in Section 4.4 to calculate premium based on portfolio-level
premium principles.

4.7 Model Visualization

After fitting and choosing an appropriate LRMoE model, the user can visualize it with in-
package plotting functions, or create more customized plots using generic simulation
functions combined with plotting utilities or other dedicated packages such as Plots.jl and
StatsPlots.jl.

In this subsection, we will use the six-component llllIl model for demonstration.
Latent Class Probabilities

The logit regression in LRMoE assigns each policyholder into latent risk classes based on
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covariates. Given a fitted mode and a vector of covariates, the probability of latent classes
can be computed and visualized using the built-in predict_class_prior and plot_class_prob
functions.

Consider the policyholders in Table 9. The predict_class_prior function will return both
latent class probabilities (prob) as well as the most likely class (max_prob_idx). The
following sample code calculates their latent class probabilities, where each row represents
a policyholder and each column represents a latent class. Based solely on covariates
information, there is not a large difference between these policyholders, and all are most
likely coming from the first latent class.

# Predict latent class probabilities, based on covariates and a model

> predict_class_prior(X[[1, 33, 96],:], alpha_fit).prob

0.400565 0.120057 0.0192732 0.00377685 0.295405 0.160923
0.450407 0.166925 0.0226136 0.00350641 0.204941 0.151607
0.490915 0.139407 0.0325873 0.00430056 0.179139 0.153652

# Predict latent class probabilities, based on covariates and a model

> predict_class_prior(X[[1, 33, 96],:], alpha_fit).max_prob_idx

[1,1,1]
For policyholders with known claim history, it may be more informative to consider the
posterior latent class probabilities by calling corresponding functions for posterior
probabilities. The posterior probability of latent class j is given by P{Z;=1 |‘i’ , X, Y} for fitted

parameters ® which can be computed analogous to Equation (6). Readers may also refer to
Section 6.3.2 of Fung et al. (2019a) for more details.

Consider again the same policyholders in Table 9. The code to calculate posterior
probabilities is similar as above. Given that policyholders B and C have non-zero claims, a lot
of latent class probability is shifted to classes 3 and 6, which correspond to the middle and
tail parts of the loss distribution (see also the largest spike in Figure 3). Meanwhile,
Policyholder A has no claim, resulting in little change to the latent class probabilities since all
components have very similar zero inflation.

The posterior probabilities are also helpful for adjusting premium rates. In Table 10, we
contrast premium calculation based on both prior and posterior probabilities. It is clear that
Policyholder A is rewarded by a decrease in premium for having no claim history, while B
and C have significant increases in premium rates.

# Predict latent class probabilities, based on covariates and a model
> predict_class_posterior(Y[[1, 33, 96],:], X[[1, 33, 96],:],
alpha_fit, comp_fit).prob
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Figure 2: Prior and posterior latent class probabilities for selected policyholders
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Figure 3: Overall goodness-of-fit of positive claims in the French auto insurance dataset
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Notes: (Left: all data points; right: non-extreme data points)
# Predict latent class probabilities, based on covariates and a model
> predict_class_posterior(Y[[1, 33, 96],:], X[[1, 33, 96],:],alpha_fit, comp_fit).max_prob_idx
(1, 6, 6]
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Overall Goodness-of-Fit

The overall goodness-of-fit can be examined by contrasting the empirical histogram against
fitted density curve and the Q-Q plot of empirical and fitted quantiles. These can be
produced with the sim_dataset function included in our package, combined with basic
plotting functions in Julia. The corresponding plots are shown in Figure 3.

Covariate Influence

The partial dependence plot is commonly used in machine learning to investigate the
influence of a particular covariate on the response, assuming independence among
covariates (Friedman 2001). For example, the marginal effect of a covariate on the mean
claim amount can be obtained using the following steps:

1. Fix the covariate at a particular value (say, car brand = “F”) for all policyholders,
while other covariates remain unchanged;

2. Use predict_mean_prior function to compute mean response values by policyholder
(see Section 4.4);

3. Compute the grand mean of all values in step (2), which averages out the effect of
other covariates and yields the mean response value when the car brand is of type
”F”;

4. Repeat steps (1)—(3) for a range of values of the same covariate of interest; for
example, varying car brand from “F” to “VAS”.

The procedure above can be generalized to continuous covariates and other quantities of
interest, such as the quantile of the response variable. The covariate influence plot
graphically illustrates how the characteristics of a policyholder are associated with a
particular measure of the response variable. For example, plotting the mean (or VaR/CTE) of
the response variable against car brand reflects how a policyholder’s overall riskiness (or tail
risk) is related to the car brand.

Figure 4 shows the influence of covariates Brand, Region, and Car Age, which may be
interpreted as follows. For car brand, MCB (Mercedes, Chrysler, or BMW), OGF (Opel,
General Motors, or Ford) and VAS (Volkswagen, Audi, Skoda, or Seat) are generally riskier.
Also, compared with other regions, policies issued in regions IF (ile-de-France) and L
(Limousin) may be considered riskier. In addition, older cars are generally associated with
lower risks.
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5. Summary and Outlook

This paper presented a new Julia package, LRMOE, for actuarial loss modelling. In this first
version, the package can cover the most basic need to fit an LRMoE model, as well as
helping the user visualize the fitted model and calculate the insurance premium.

There are several future developments in our plan, including:

* Model-selection tools: As of the current version, model selection is done by
AIC/BIC/CV, all of which require the user to choose and run a selection of models.
Some automated model-selection procedures may be potentially incorporated in the
package (e.g., SCAD-type penalty in Fan and Li 2001, and Yin and Lin 2016).

* Feature-selection tools: Datasets usually contain a large number of covariates, but
not all are important for predicting the response. While plots of covariate influence
may offer some intuition of their relative importance, it may be more insightful to
quantify their influence and provide a function to automatically choose the most
influential covariates.

Furthermore, it is crucial to compare the fitting and predictive performances between our
proposed LRMoE and classical regression models. Several existing papers have already
shown that Erlang Count LRMoE (EC-LRMoE) performs much better than Negative Binomial
GLM (see Section 6.1 (Table 7) of Fung et al. 2019a), and Transformed-Gamma LRMoE (TG-
LRMoE) performs much better than various severity GLM (see Section 5.3.1 (Figure 2 and
Table 2) of Fung et al. 2020). Nonetheless, it is still desirable to conduct extensive
comparisons between LRMoE under different expert functions and a wider range of classical
models (including, for example, GAM), and this will be addressed in a new paper that we are
currently working on.

6. Appendix

The Appendix contains the parameter estimates of model llllll presented in Section 4, as well
as their 95% confidence intervals. Significant parameters are marked in bold.

27



&

Class 1

Class 2

Class 3

Intercept 0.733 (0.538,0.916) | -1.038 (-1.221, -0.675) | -0.496 (-0.74, -0.243)
Car Age 0.039 (0.031,0.043) | -0.015 (-0.039, -0.011) | -0.001 (-0.013, 0.003)
Driver Age 0.009 (0.006, 0.01) -0.001 (-0.006, 0.002) | -0.002 (-0.007, 0)
Power: e 0.047 (-0.012,0.192) | -0.099 (-0.23,0.129) | 0.201 (0.134, 0.368)
Power: f -0.050 (-0.1, 0.071) -0.007 (-0.123, 0.253) | 0.195 (0.098, 0.375)
Power: g -0.109 (-0.2,-0.021) | -0.231 (-0.421, -0.061) | -0.031 (-0.166, 0.098)
Power: h 0.040 (-0.083, 0.176) | -0.228 (-0.437,0.008) | 0.091 (-0.077, 0.284)
Power: i 0.088 (-0.021, 0.27) -0.240 (-0.488, 0.039) | 0.267 (0.102, 0.548)
Power: | 0.091 (-0.022, 0.259) | -0.449 (-0.791,-0.17) | 0.297 (0.08, 0.472)
Power: k 0.053 (-0.101, 0.315) | -0.001 (-0.217, 0.344) | 0.305 (0.089, 0.654)
Power: | -0.124 (-0.402, 0.119) | -0.506 (-0.895, -0.077) | -0.016 (-0.467, 0.361)
Power: m -0.071 (-0.503,0.32) | -0.546 (-0.863, -0.088) | -0.062 (-0.621, 0.436)
Power: n -0.577 (-1.083, -0.155) | 0.078 (-0.657, 0.747) | -0.032 (-0.655, 0.501)
Power: o -0.228 (-0.577,0.355) | -0.466 (-0.973,0.099) | 0.192 (-0.603, 0.8)
Brand: JK -0.121 (-0.403, -0.07) | 1.023 (0.663, 1.16) -1.493 (-1.813, -1.269)
Brand: MCB -0.381 (-0.502, -0.173) | -0.404 (-0.786, -0.103) | -0.231 (-0.443, 0.039)
Brand: OGF -0.138(-0.26,0.024) | -0.299 (-0.539, -0.04) | 0.066 (-0.115, 0.248)
Brand: Other -0.181(-0.391,0.03) | -0.422 (-0.778, -0.066) | -0.259 (-0.514, 0.006)
Brand: RNC -0.189 (-0.306, -0.031) | -0.043 (-0.237,0.201) | -0.178 (-0.335, -0.003)
Brand: VAS -0.220 (-0.342,-0.036) | -0.219 (-0.45,0.127) | -0.020 (-0.167, 0.176)
Gas: Regular -0.170 (-0.251, -0.148) | -0.097 (-0.259, -0.018) | -0.240 (-0.338, -0.174)
Region: BN 0.066 (-0.075, 0.284) | 0.067 (-0.216,0.396) | 0.248 (0.008, 0.531)
Region: B 0.466 (0.39, 0.683) -0.317 (-0.583, -0.055) | 0.341 (0.194, 0.587)
Region: C 0.111(0.028,0.262) | 0.048 (-0.08, 0.257) -0.040 (-0.159, 0.179)
Region: HN -0.464 (-0.808, -0.332) | 0.106 (-0.372,0.307) | -0.745 (-1.233, -0.396)
Region: IF 0.174 (0.126,0.357) | 0.517 (0.426, 0.79) 0.494 (0.361, 0.747)
Region: L 0.514 (0.315,0.855) | 0.242 (-0.118, 0.78) 0.763 (0.363, 1.185)
Region: NPC -0.102 (-0.25,0.018) | 0.120(-0.123,0.306) | -0.176 (-0.421, 0.05)
Region: PL 0.194 (0.078,0.335) | 0.086 (-0.082,0.362) | 0.036 (-0.188, 0.245)
Region: PC 0.449 (0.343,0.712) | 0.144 (-0.078,0.583) | 0.332 (0.18, 0.638)

5 0.970 (0.969,0.970) | 0.981(0.980,0.984) | 0.836 (0.822, 0.840)

i 7.065 (7.064,7.067) | 6.379 (6.370,6.387) | 6.950 (6.892, 7.031)

& 0.044 (0.042,0.045) | 0.061 (0.053,0.068) | 1.046 (0.958, 1.109)
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Q. Class 4 Class 5 Class 6
Intercept -1.362 (-1.845, -0.902) | -0.077 (-0.095, 0.327) 0
Car Age -0.010 (-0.029, 0.004) | -0.012 (-0.029, -0.011) 0
Driver Age -0.015 (-0.022, -0.011) | -0.002 (-0.005, -0.001) 0
Power: e 0.275 (0.035,0.561) | -0.026 (-0.091, 0.091) 0
Power: f 0.248 (0.031,0.529) | -0.082 (-0.217, -0.03) 0
Power: g 0.108 (-0.165, 0.343) | -0.029 (-0.117, 0.034) 0
Power: h 0.098 (-0.328, 0.463) | -0.014 (-0.21, 0.079) 0
Power:i -0.009 (-0.413,0.369) | -0.313(-0.619, -0.257) 0
Power: | 0.135 (-0.335, 0.584) | -0.207 (-0.425, -0.109) 0
Power: k 0.483 (0, 1.003) -0.296 (-0.523, -0.151) 0
Power: | 0.518 (-0.146, 1.14) | -0.154 (-0.478, 0.091) 0
Power: m 0.134 (-0.786, 0.796) | -0.133 (-0.504, 0.156) 0
Power: n 0.560 (-0.528, 1.085) | -0.311 (-0.769, 0.043) 0
Power: o 0.559 (-0.453,1.502) | -0.528 (-0.966, -0.319) 0
Brand: JK -1.794 (-2.387,-1.432) | 0.797 (0.728, 1.025) 0
Brand: MCB 0.016 (-0.391, 0.357) | 0.254 (0.134, 0.453) 0
Brand: OGF 0.093 (-0.234, 0.465) -0.128 (-0.347, -0.01) 0
Brand: Other 0.100 (-0.401, 0.528) 0.087 (-0.085, 0.339) 0
Brand: RNC -0.287 (-0.562, 0.034) | 0.005 (-0.18, 0.091) 0
Brand: VAS -0.304 (-0.636, 0.108) | -0.051 (-0.236, 0.066) 0
Gas: Regular -0.035 (-0.207,0.079) | 0.080 (0.019, 0.148) 0
Region: BN 0.321(-0.248, 0.756) | -0.395 (-0.641, -0.271) 0
Region: B 0.434(0.121,0.778) | -0.609 (-0.908, -0.625) 0
Region: C 0.318 (0.094, 0.595) | -0.379 (-0.587, -0.355) 0
Region: HN -0.530 (-1.258, 0.012) | 0.468 (0.408, 0.746) 0
Region: IF 0.260 (-0.048, 0.579) | -0.347 (-0.445, -0.23) 0
Region: L -0.287 (-1.042,0.43) | -0.714 (-0.99, -0.527) 0
Region: NPC -0.570 (-1.064, -0.182) | -0.185 (-0.376, -0.092) 0
Region: PL 0.388 (-0.009, 0.682) | -0.462 (-0.66, -0.389) 0
Region: PC 0.670 (0.293, 1.02) -0.525 (-0.755, -0.455) 0

5 0.905 (0.896,0.911) | 0.986 (0.983,0.992) | 0.968 (0.962, 0.974)
/i 4.350 (4.334,4.366) | 7.341(7.172,7.420) | 6.580 (6.443, 6.688)
& 0.183 (0.165,0.200) | 0.415 (0.076,0.478) | 1.948 (1.835, 2.023)
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