Canadian »/ Institut
Institute of canadien
Actuaries des actuaires

Research Paper

LRMOE: An R Package for Flexible Insurance
Loss Modelling Using a Mixture of Experts
Regression Model

Spark C. Tseung, Andrei L. Badescu,
Tsz Chai Fung, and X. Sheldon Lin

February 2022
Document rp222020

Ce document est disponible en francais

© 2022 Canadian Institute of Actuaries

Highlights of

LRMOoE.jl: a software package for insurance loss modelling using a
mixture of experts regression model

and

LRMoE: an R package for flexible actuarial loss modelling using a
mixture of experts regression model

In recent years, we at the University of Toronto (Andrei L. Badescu, X. Sheldon Lin, and current
and former PhD students) have been working on research projects on ratemaking and reserving
for property/casualty (P&C) insurance. Our goal is to develop new and implementable
technologies and ready-to-use software packages for actuaries in this area. This project is one
of the results of these efforts. It was funded by an Academic Research Grant from the Canadian
Institute of Actuaries (CIA), which we gratefully acknowledge.

In this project, we introduce new open-source statistical software tailor-made for actuarial
applications which allows actuarial practitioners to model and analyze insurance loss
frequencies and severities using a nonlinear multivariate regression model. The model is very
flexible, and it can fit any type of positive dataset and capture the dependency structure
implied by the data, and is statistically implementable.

Two papers with corresponding software packages are produced: a vignette for an R package
and the other for a Julia package. R is known by many actuaries, while Julia is a highly efficient
programming language that has been widely used by the machine learning and computer
science community. The Julia package runs roughly four times faster than the R package. The
packages can be downloaded at https://github.com/sparktseung/LRMoE.jl and
https://github.com/sparktseung/LRMoE, respectively. They offer distinctive features which
cannot be achieved using existing software packages. Key features include a wider coverage on
frequency and severity distributions and their zero-inflated versions, parameter estimation
under data censoring and truncation, and a collection of insurance ratemaking and reserving
functions. The packages also provide several model-evaluation and model-visualization
functions to help users easily analyze the performance of the fitted model and interpret the
model in insurance contexts.

The underlying model and methodology developments of our software packages can be found
in the following papers:

e Fung, T.C,, Badescu, A., and Lin, X.S. (2019). “A class of mixture of experts models for
general insurance: application to correlated claim frequencies.” ASTIN Bulletin, 49(3),
647—688.

e Fung, T.C, Badescu, A., and Lin, X.S. (2019). “A class of mixture of experts models for
general insurance: Theoretical developments.” Insurance: Mathematics and Economics,
89, 111-127.

e Fung, T.C, Badescu, A., and Lin, X.S. (2020). “A new class of severity regression models
with an application to IBNR prediction.” North American Actuarial Journal, 25(2), 1-26.

2

e Fung, T.C,, Badescu, A., and Lin, X.S. (2021). “Fitting censored and truncated regression
data using the mixture of experts models.” Available in SSRN:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=3740061.

These papers are available upon request. If you have any comments, questions, or feedback,
please contact either of us.

Andrei L. Badescu and X. Sheldon Lin
University of Toronto

badescu@utstat.utoronto.ca, sheldon.lin@utoronto.ca

LRMoE: An R package for flexible insurance loss modelling using a
mixture of experts regression model

Abstract

This paper introduces a new R package, LRMoE, statistical software tailor-made for actuarial
applications which allows actuarial researchers and practitioners to model and analyze
insurance loss frequencies and severities using the Logit-weighted Reduced Mixture of Experts
(LRMoE) model. LRMoE offers several new distinctive features which are motivated by various
actuarial applications and generally cannot be achieved using existing packages for mixture
models. Key features include a wider coverage on frequency and severity distributions and their
zero inflation, the flexibility to vary classes of distributions across components, parameter
estimation under data censoring and truncation, and a collection of insurance ratemaking and
reserving functions. The package also provides several model-evaluation and model-
visualization functions to help users easily analyze the performance of the fitted model and
interpret the model in insurance contexts.

Keywords: Multivariate regression analysis, censoring and truncation, Expectation-Conditional-
Maximization Algorithm, insurance ratemaking and reserving, R.

1. Introduction

The Logit-weighted Reduced Mixture of Experts (LRMoE) model is a flexible regression model
introduced by Fung et al. (2019b), which is regarded as the regression version of a finite
mixture model with the mixing weights (called the gating function) which depend on the
covariates. We may interpret the LRMoE as clustering policyholders into different subgroups
with varying probabilities. Conditioned on the subgroup component to which each policyholder
is assigned, the distributional properties of loss frequency or severity are governed by mixture
component functions (called the expert function). Model flexibility, parsimony, and
mathematical tractability are justified (see Fung et al. 2019b), demonstrating a sound
theoretical foundation of LRMoE in a general insurance loss modelling perspective. Considering
some specific choices of expert functions, Fung et al. (2019a) and Fung et al. (2020) construct
Expectation-Conditional-Maximization (ECM) algorithms for efficient frequency and severity
model calibrations and show the potential usefulness of LRMoE in terms of insurance
ratemaking and reserving.

While the existing R package flexmix (Leisch 2004 and Griin and Leisch 2008) may perform
parameter estimation for some special cases of LRMOoE, it offers only limited choices of
component functions (Poisson, Gaussian, Gamma and Binomial) for model fitting. Miljkovic and
Griin (2016) have used its extensibility feature to prototype new mixture models with
alternative component functions (such as Lognormal, Weibull, and Burr), but users are still
constrained to choosing a single parametric distribution for all the components.

This paper introduces a new R package, LRMOE, statistical software tailor-made for actuarial
applications which allows actuarial researchers and practitioners to model and analyze
insurance loss frequencies and severities using the LRMoE model. The package offers several
new distinctive features which are motivated by various actuarial applications and generally
cannot be achieved by existing packages, including:

Wider coverage on frequency and severity distributions: Apart from the severity
distributions covered by Miljkovic and Griin (2016), the package also covers more
frequency expert functions important for actuarial loss modelling, including negative
binomial distribution and gamma-count distribution.

Zero-inflated distributions: Often actuaries are more interested in analyzing the
aggregate loss for each policyholder instead of considering frequency and severity
separately. In this situation, it is common practice to observe excessive zeros, which
motivates the use of zero-inflated expert functions in the LRMoE, which is offered in this
package. Note that efficient computation of zero-inflated LRMoE requires defining an
additional latent variable (see Section 2.2 for details), further hindering the
effectiveness of using the extensibility feature of flexmix.

Varying classes of distributions across components: Insurance loss data may exhibit a
mismatch between body and tail behaviours, which should be captured using different
distributions. One approach is to choose two distributions and combine them using a
peaks-over-threshold method (see, for example, Lee et al. 2012, and Scollnik and Sun
2012). Another is to consider a finite mixture model based on different component
distributions (see, for example, Blostein and Miljkovic 2019). The LRMoE package is
similar to the latter, and users can select different expert functions across different
mixture components, which allows for more flexible and realistic modelling of data.

Incomplete data: In many actuarial applications, including reinsurance, operational risk
management, deductible ratemaking, and loss reserving, censored and truncated data
are often observed and need to be dealt with. Censoring and truncation of LRMoE is
introduced by Fung et al. (2021) with the expert functions restricted to univariate
Gamma distribution. The new package removes such restriction by offering users
versatility to fit randomly censored and truncated multivariate data with many choices
of expert functions.

Model selection and visualization: In addition to the model-fitting function, the new
package also provides several model-evaluation (AIC, BIC) and model-visualization (e.g.,
latent class probabilities, covariate influence) functions to help users easily analyze the
performance of the fitted model and interpret the fitted model in the insurance context.

Insurance ratemaking and reserve calculation: The package further contains a number of
pricing and reserving functions (e.g., mean; variance; value-at-risk, or VaR; conditional
tail expectation, or CTE), which enable actuaries to simultaneously perform ratemaking
to multiple insurance contracts with different characteristics, based on abundant
choices of premium principles.

The paper is organized as follows. Section 2 reviews the LRMoE model and parameter
estimation using the ECM algorithm. In Section 3, we use a simulated dataset to demonstrate
the basic fitting procedure in the LRMoE package. Section 4 contains more package utilities,
such as parameter initialization, model visualization, and pricing function, which are illustrated
using a French auto insurance dataset. The paper is concluded with some remarks in Section 5.
For brevity, we only present code lines which are the most relevant to our new package. The
source code, package documentation, and complete replication code for all examples in this
paper are available at https://github.com/sparktseung/LRMoE and https://github.com/
sparktseung/LRMoE-Paper-Demo.

2. LRMoE Model and Parameter Estimation

In this section, we provide a brief overview of the LRMoE model proposed in Fung et al.
(2019b), and discuss the ECM algorithm for parameter estimation. For brevity of presentation,
we will assume, in sections 2.1 and 2.2, that all response variables (claim frequency or severity)
are observed exactly. In Section 2.3, we will address data truncation and censoring for the
LRMoE model.

2.1 Logit-weighted Reduced Mixture of Experts

Let Ti = (Zio, Tit, ..., riP)" denote the (P+1)-dimensional covariate vector for

v — 1 i
Policyholder i(i=1, 2, ..., n) with intercept 10 = 1 and ¥i = (¥i1, Y2, - - -, YiD)" denote the
D-dimensional vector of their response variables, which can be either claim frequency or

— (4 a 3T _ T .
severity. Let X = (1,2, ... @n)" gng Y = (Y1, 92, Yn)" denote all covariates and
responses for a group of n policyholders.

Based on the covariates, Policyholder iis classified into one of g latent risk classes by a logit-
gating function

6.1’[)(0;;17,-) o _
T (Ti;) = =3 — F=L2,..., g, (1)
> -1 exp(a,x;)
- . . ;=YL . . - .
where @5 = (@0, ¥j1, -+, @jP)" is a vector of regression coefficients for latent class j.
I T
Given the assignment of latent class j, the response variables ¥i = (Uil ¥i2 - -+ Uin)" are

conditionally independent, with the d-th dimension probability density function (or probability
mass function) given by

gj(l(yid: (de- U""jd) = (51(11{.111'(1 = ()} + (1 - (Sj(l)fjd(yid: I.‘/’jd) (2)

where %7d is 3 probability mass at zero, Hvia =0} s the indicator function, and fia(yid; ¥ja) is

the density of some commonly used distribution with parameters "*';’J'”for modelling insurance
losses. Table 1 gives a list of parametric distributions supported by the LRMoE package.

Table 1: Distributions Supported by LRMoE

Root Distribution fid(y) Parameters
gamma Gamma my'n_l(f—y/o m>0,60>0
o log y—u))
Inorm Lognormal yo\/ZT exp [557] JIRS R,oc>0
. I A (y—p)~
invgauss Gn:jz;n 33 €XP [oy] >0, A>0
, , k (y)k-1 (¥) k .
weibull Weibull X (:\-) exp X E>0,A>0
k (y\€ 1 ﬂ c1—k— . .
burr Burr) (/\) [1 /\] Ek>0,¢>0,A>0
poisson Poisson C_/\% A>0
. Negati -+
nbinom Bﬁiam';;el (y ")p (1—p)Y neNT, 0<p<l
ms 1 ys—1 o f_
gammacount Gamma- fO T(ys) (ys) . (3\]){ ll}dll m > 0. s > 0
count "Ly t)s—lexp{—u}du -
0 TI'((y+1)s))
ZI-root All above gjdzdjdl{y=0}+(1_(5jd)fjd 0<(5jd< 1

Note that a probability mass %jd at zero allows for more realistic modelling of insurance data

which usually exhibit excess zeros. As a naming convention, we will refer to %4 as a component

distribution/expert function, and fidas its positive part, although claim frequency distributions
(e.g., Poisson) also have some probability mass at zero.

Under LRMOoE, the conditional probability density function (or probability mass function) of ¥

2 o

given covariates

hyi;xi, o, 0, W)

where & = (a1, a2

. 0
representing the default class,

at zero by component and by dimension, and b

lll I .

g D
= Z mi(xi; o) x H 95d(Yid; 0jd, Vjd)
cey Q)

= (5jd)1§j§g.1§d§1)

= {'lf"”jd :

is a g x(P +1)-matrix of mixing weights with ®g

= (0,0,..., 0)"

is a (g x D)-matrix of probability masses
1<j<g1<d< D}

is a list of

parameters for the positive part fid by component and by dimension. Note that

={0,0,..., 077

7

ensures that the model is identifiable; that is, there is a one-to-one mapping

between the regression distributions and the parameters (see Jiang and Tanner 1999, and Fung
et al. 2019a).

For a group of n policyholders, the likelihood function is given by

n n g D
L(a,5,¥:X,Y) =Hh(y,—:w,«.a.5.m) =H an(m,»:aj) X Hgj(,(y,-[,;51(,.1;,1-(,) . (4)

i=1 i=1 | j=1 d=1
2.2 Parameter Estimation

For parameter estimation in finite mixture models, the Expectation-Maximization (EM) algorithm
is commonly used (see, for example, Dempster et al. 1977, and MclLachlan and Peel 2004).
However, for the LRMoE model, the M-step requires maximization of a non-concave function
over all elements of a. Fung et al. (2019a) thus use the ECM algorithm (Meng and Rubin 1993),
which breaks the M-step into several substeps. The ECM algorithm implemented in the LRMoE
package is described as follows.

® = (a,9, \I')vas the parameters to estimate. For ¢ = 1.2, -, " we introduce a latent
Z,‘= (Z,‘].Z,'Q Zig)T
0

Denote

, Where Zij =1 if yicomes from the j-th component
Zij = Zijdo + Zi_jdl’

random vector
distribution and 27 =Y otherwise. For d=1.2... D, we further write
where Zijd0 = 0 and Zija1 = L if the d-th dimension of ¥i comes from the positive part ff‘iof the

. = o= 0. . .0
j-th component, and Zijao=1 3ng Zija1 = Vit it comes from the zero inflation %%

The complete-data loglikelihood function is given by

n g D
(@ XY, Z) =Y 7 {bg mj (i o) + > log .f.-;jd(;e;id;a‘jd.w}
d=1

i=1 j=1

n g n g D
= Z Z Zijlog mi(xi; o) + ZZ Z {Zijaolog dja + Zijar log(1l — djq) }

i=1 j=1 i=1 j=1d=1
n g D
+> > Zijarlog fialyias vja)-

E-Step

Foreachi=1,2,...,n, the random vector Z; follows a multinomial distribution with

count 1 and probabilities (m1(zi; 1), ma(@i; 2), - . -, mg(Ti; g)) .Given Zii = 1

the conditional distribution of Zijao is Bernoulli with probability Ojd Hence, at the t-th

iteration, the posterior expectations of Zif, Zijdo and Zijdl are

2 = E{Zy|®8“V, X, Y} = P{Z; = 1|8“ "), XY}
7*"(331‘;0(; Dy) x [T ngd(yzdao(t D U’(t) (6)
- Zg' 1 W4 (x3; (t 1) Hd 1 95d(Yid; 0('_1) '/’(t 1))

Zgzzo = E{Zija0| 2"V, X, Y}
= P{Zijao =118V, XY, Z;j = 1} x P{Z;; = 1|8, X, Y}
51('51_1)1{%(1 =0}

(t)
—_— X ~
(=1 (-1 1 ’

8% 1 {yia = 0} + (1= 85) Fja(0; 955)

and

) _ (t) ,(t)
zgdl J Z]dO (8)
where Fjq is the cumulative distribution function of the positive part fjq.
CM-Step
Q(d:;d 1 XY)

In the CM-step, we aim to maximize , Which can be decomposed into
three parts as

Q®: 3V X, Y)=QY + QY + Q) (9)
where
n g
Q) =) =) logmj(xis ay), (10)
i=1 j=1
n g D
9 =323 {=finlogdia+ =i los (1~ dy0)}. (1)
i=1 j=1 d=1
and
n g D
t
QY =>"3"5" 2 log fia(wia ¥sa). (12)
i=1 j=1 d=1

(t)
To maximize Qa , we use the same conditional maximization as described in Fung et al.
9

_(t—1)
(2019a). We first maximize it with respect to a; with a; fixed at @; forj=2,3,...,9-
1. The next step is to maximize with respect to a; with updated a¥ and other a; fixed at
(t—1)

(YJ-

forj=3,4,...,g- 1. The process continues until all &’s have been updated. For
(£)

obtaining each Q; , the Iteratively Reweighted Least Square (IRLS) approach (Jordan and

Jacobs 1994) is used until convergence.

~(t)

Q

0; . .)
For ““s , each 79 can be updated using the following closed-form solution

n _(t)
(t) 2ic ~i7d0 _
ajd: n () (1) (13)
2z fv’-fjdo + -*'a'.'jdl}

(8
Q.
2y can also be divided into smaller problems by component j and by
L (®)
dimension d. For updating each v 74 closed-form solutions are only available for very special

distributions (e.g., Poisson, Lognormal). Numerical optimization is used in most cases, especially

The maximization of

when the observation yi's are not observed exactly (see Section 2.3).

As discussed in McLachlan and Peel (2004), a mixture of severity distributions may have
unbounded likelihood, which leads to spurious models with extremely large or small parameter
values. In the LRMOoE package, we adopt the same maximum a posteriori (MAP) approach as in
Fung et al. (2020), which uses appropriate prior distributions to penalize the magnitude of
fitted parameters (see Section 3). The rationale of including penalty functions is to avoid
obtaining spurious models due to the unbounded nature of the loglikelihood function. The
penalty itself should be small enough so that it results to negligible impacts on the fitted model.
On the other hand, the penalty functions avoid parameters diverging to unreasonable values so
that the fitted model would become more robust. For more details regarding the rationales and
executions, readers are recommended to refer to Section 4 of Fung et al. (2020).

2.3 LRMOoE with Censoring and Truncation

Censoring and truncation are common in insurance data sets and need to be dealt with. For
example, when a policy limit is applied, loss amounts above the limit will be recorded as the
limit only, which creates right censoring of the complete loss data; when a policy deductible is
applied, loss amounts below the deductible are not reported to the insurer, thus leading to left
truncation.

Fung et al. (2021) have discussed the LRMoE model with censoring and truncation, where all
component distributions are Gamma. For parameter estimation with data censoring and
truncation, the ECM algorithm in Section 2.2 is slightly modified, with an additional E-step to
remove the uncertainties arising from censoring and truncation. Since the main purpose of this

10

paper is to demonstrate the application of the LRMoE package, we will omit the details and
refer interested readers to the cited paper.

For all distributions included in it, the LRMoE package can perform parameter estimation in the
presence of data truncation and censoring. Consequently, the user’s input is slightly different
from existing packages for mixture models. A detailed example on model fitting in our package
is given in Section 3.

2.4 Ratemaking and Reserving in LRMoE

The model structure of LRMoE allows for easy computation of quantities relevant to actuarial
ratemaking and reserving (see Fung et al. 2019b). At the policyholder level, the moments and

common measures of dependence (e.g., Kendall’s tau and Spearman’s rho) of ¥7 can be
computed in simple forms. The VaR and CTE can also be numerically solved without much
difficulty. Various premium principles can be applied to price insurance contracts, including
pure premium, standard deviation (SD) premium, limited expected value (LEV), and stop-loss
(SL) premium. Risk measures can also be calculated for each individual policyholder (e.g., 99%-
VaR). At the portfolio level, simulation can be conducted to obtain the distribution of the
aggregate loss of all policyholders, which is useful for calculating the total loss reserve and
premium calculation. The simulation process is facilitated by a data simulator included in our
package (see Section 4.5).

3. Example: Simulated Dataset

In this section, we will demonstrate how to fit an LRMoE model using a simulated dataset,
LRMoEDemoData, included in the package. The variables in LRMoEDemoData are
described in Table 2, and the dataset is generated by an LRMoE model given in Table 3. A
detailed description of the demo dataset can be found on the accompanying website of
the package. It can be loaded with the following lines.

11

Table 2: Description of LRMoEDemoData

Covariate?! Name Description

L350 intercept Constant 1

I sex 1 for male, O for female

€I agedriver Driver’s Age: 20-80

€I;3 agecar Car’s Age: 0-10

T4 region 1 for urban, 0 for rural
Response Name Description

Yil Y[,1] Claim count from business line 1
32 Y[,2] Claim severity from business line 2
Row Index Y[,1] Y[,2]

1-6000 No censoring or truncation | No censoring or truncation
6001-8000 No censoring or truncation | Left-truncated at 52
8001-10000 | No censoring or truncation | Right-censored at 100

L All covariates are generated independently and uniformly at random.
2The complete dataset (X, Y) contains 10,000 rows. As a result of left-truncating Y[,2], 172 rows of data are
discarded, and the observed dataset (X.obs, Y.obs) has 9828 rows only.

The package and source code are available on github.
The installation requires two lines of code.

> library(devtools)
> install_github("sparktseung/LRMoE")

Load DemoData which contains four matrices
X, Y are complete datasets with 10,000 rows
X.obs, Y.obs are subject to data truncation and censoring

> library(LRMoE)
> data(LRMoEDemoData)

To address data truncation and censoring, the user’s input of response Y is different from

existing packages. For each dimension d of observation yi, instead of a single numeric input, a

l l :
0 <ty < Yig < Yjg < tig < o0 ¢

quadruple J is needed, where @ and "id are

l
Yid

u
. Y.
the lower and upper bounds of truncation, and and Yid are the lower and upper bounds

of censoring. The exact value of Yid Jies between censoring bounds such that
l .
Yig < Yida < g, n X (4D)-matrix.

id Fora sample of size n, an s needed, where each

12

n x4

-block describes one dimension of Y. Sample rows of Y.obs in DemoData are shown as

follows.

Complete data: no truncation, no censoring

>Y.obs[1,]
1 P yi.1 yu.1 tu.1 tl.2 yl.2 yu.2 tu.2
0.0000 5.0000 5.0000 Inf 0.0000 40.2224 40.2224 Inf
#Y[, 2] is left-truncated at 5
> Y.obs[6002,]
1.1 yl.1 yu.1 tu.1 tl.2 yl.2 yu.2 tu.2
0.0000 0.0000 0.0000 Inf 5.0000 81.3488 81.3488 Inf
#Y[2] is right-censored at 100
>Y.obs[7884,]
tl.1 yl.1 yu.1 tu.1 tl.2 yl.2 yu.2 tu.2
0 7 7 Inf 0 100 Inf Inf
Table 3: True Model of LRMoEDemoData
Logit Regression Coefficients:
—0.50 1.00 —-0.05 0.10 1.25
N =
0 0 0 0 0
Component Distributions:
j=1 j=2
Comp.dist | djq | Yja Comp.dist djd | Yjd
d=1 | Poisson 0 (A =6) z- 0.20 | m = 30,s = 0.50
GammaCount
d=2 |Inorm 0 (. =4.0,0 =0.30) | invgauss 0 (e =20.0,A = 20.0)

13

Table 4: Fitted Model 1 of LRMoEDemoData

Logit Regression Coefficients:
) —0.3927 0.9837 —-0.0493 0.0910 1.1527
O =
0 0 0 0 0
Component Distributions:
j=1 j=2
Comp.dist | djq | YPjd Comp.dist djd | Yjd
d= 5 iy Zl-
: _: 2 = 29.52, 5 = 0.4¢
1 Poisson 0 A= b5.7T7 GammaCount 0.19 | m = 29.52,s = 0.49
;j: Inorm 0 i =4.01,0 = 0.30 | invgauss 0 p=19.92, A = 22.06

Table 5: Fitted Model 2 of LRMoEDemoData

Logit Regression Coefficients:

—0.3674 0.9811 -0.0494 0.0917 1.1483

& —
0 0 0 0 0
Component Distributions:
j: 1 j= 2
Comp.dist | ;4 | ja Comp.dist | 4 | Yja
d=1 | 0009 | \ = 5.87 Z-- 0.195 | n = 30, p = 0.499
Poisson nbinom
k=112 &= 5517, - .
d=2 | burr 0 gamma 0 m = 1.67,60 = 11.53
A = 56.99

To fit an LRMoE model, the user needs to specify the following inputs: number of latent
classes (n.comp), what component distributions to use (comp.dist) for each dimension and
each component, and initial guess of model parameters (alpha.init for logit regression
coefficients, zero.init for zero-inflation probabilities, and params.init for parameters of the
positive part of component distributions).

For illustration purposes, we first assume that the user’s choice of component distributions
coincides with the true model, and the initial guesses of parameters are also close to the true
ones. As shown in the following sample code of initialization, the user has chosen a two-
component mixture. For example, for the first dimension of response variable, the user
specifies the second latent component comp.dist[1,2] to be a zero-inflated gamma-count
distribution, where the initial guess of zero-inflation zero.init[1,2] is 0.5 and the gamma-count
parameters params.init[[1]][[2]] are (40, 0.8).

14

Number of latent classes (component distributions)
ncomp=2 #=g
Number of response dimension

dmm=2 #=d

A matrix of strings to specify component distributions # by dimension (row) and by
component (column)
Dimension is d * g

comp.dist = matrix(c("poisson", "ZI-gammacount",

"Inorm", "invgauss"), nrow = dim.m, byrow = TRUE)

Initial guesses of alpha: logit regression weights # by component (row) and by covariate
(column)

Last row must be zero for default class # Dimension is g * (P+1)
alpha.init = matrix(¢(0, 0, 0, O, 0,
0,0,0,0,0),

nrow = n.comp, byrow = TRUE)

Initial guesses of zero-inflation probabilities

by dimension (row) and by component (column)

Must be zero for non-zero-inflated component distributions
zero.init = matrix(¢(0, 0.5,

0, 0)

nrow = dim.m, byrow = TRUE)

Initial guesses of component distribution parameters # It is a d-length list (by dimension),
where each element is a g-length (by component) list of vectors

params.init = list(list(c(10), c(40, 0.8)),

list(c(3, 1), c(15, 15)))

15

By default, the fitting function imposes a penalty on the magnitude of parameters to avoid
spurious models with extremely large or small parameter values. This is implemented by
specifying hyper parameters for the prior distributions of model parameters. For simplicity,
positive parameters are given Gamma priors, real parameters are given normal priors with
mean zero, and parameters with bounded ranges are not penalized at all.

For example, the following lines indicate that the prior distributions are: logit regression
coefficients ajp follows N(0, 52), Lognormal meanlog u follows N(0, 12), and Lognormal sdlog
follows Gamma distribution with shape 9 and scale 0.5. No penalty is imposed on zero-inflation
probabilities.

Penalty for alpha: a single numeric for all logit regression weights

> hyper.alpha =5

Penalty for component distribution parameters
List structure is the similar to params.init
> hyper.params = list(list(c(9, 0.5), c(9, 0.5, 9, 0.5)),
list(c(1, 9, 0.5), ¢(9, 0.5, 9, 0.5))
)

With all input argument properly defined, the model-fitting function can be called as follows. It
is optional to print intermediate parameter updates on screen by setting print = TRUE.

> fitted.model = LRMOEFit(Y = Y.obs, X = X.obs, n.comp = n.comp, comp.dist = comp.dist,
alpha.init = alpha.init,
zero.init = zero.init, params.init = params.init, penalty = TRUE,

hyper.alpha = hyper.alpha, hyper.params = hyper.params, print =
FALSE)

The fitting function will return a list, which contains model specification (n.comp, comp.dist),
intializations (e.g., alpha.init), estimated parameters (e.g., alpha.fit), loglikelihood (ll, Il.np with
no penalty), and information criteria of the fitted model (AIC, BIC). They can be inspected using
standard R methods. Examples are given below.

Check LRMoE model specification
> fitted.modelScomp.dist

comp 1 comp 2

dim 1 "poisson" "ZI-gammacount" dim 2 "Inorm"
"invgauss"

16

Inspect fitted logit regression coefficients

> fitted.modelSalpha.fit

intercept sex agedriver agecar region
compl |-0.3926849 0.9836549 -0.04925036 0.0910102 1.152698
comp 2 | 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
Figure 1: Fitting results of DemoData
Marginal 1 of DemoData Marginal 2 of DemoData
I 8 - o True
s - ° « Model 1
- - mgge:; . | * Model 2
. 2 z o]
g ° B
g -
3 - \
il \'I . AL
2 1 In IIM“['IIIIIII' ||IIIIIIII]IIII]]I-|- g B ! : | | : | : : — | =
“ 03 6 9 13 17 21 25 29 33 37 41 45 49 0 20 40 60 80 100
¥ Y
Q-Q Plot, DemoData Dimension 1 Q-Q Plot, DemoData Dimension 2
o ah o
§ _
i 7 E
2 ® True i
© Model 1
= £ Model 2 o

0 10 20

T T T
30 40 50

Theoretical Quantile

17

0 50 100 150

Theoretical Quantile

200

Inspect fitted parameters for the second dimension of Y

fitted.modelSparams.fit[["dim 2"]] # or fitted.modelSparams.fit[[2]]

S'comp 1'
Meanlog sdlog
4.0 03

S'comp 2'
Mean scale
19.77823 21.42792

The fitted model is summarized in Table 4. The parameter estimates are quite close to the true
ones. Considering simulated random noises and loss of information due to censoring and
truncation, the fitting function is able to identify the true model when it is known.

In practice, when the true underlying model is not known, the user needs to perform some
preliminary analysis on the dataset to determine model specification and parameter
initialization. Table 5 contains the parameter estimates of another user-specified LRMoE model
for DemoData, which has quite different component distributions compared with the true
model.

The fitted loglikelihood values for Model 1 and Model 2 are -72885.57 and -73374.48,
respectively. A graphical comparison of the two models is given in Figure 1. While both models
have similar fitting performance for claim frequency, Model 2 is noticeably worse in fitting
small and extreme values of claim severity.

4. Example: Real Dataset

In this section, we illustrate how to fit an LRMoE model to a real insurance dataset. As the basic
fitting procedure has been discussed in the previous section, we will focus on data pre-
processing and other utilities of our package, including parameter initialization, computation
parallelization, actuarial pricing functions, and model visualization.

4.1 Data Description and Pre-Processing

We consider the French auto insurance claims dataset included in the R package CASdatasets
(Dutang and Charpentier 2019), which can be loaded as follows.

> library(CASdatasets)
> data(freMTPLfreq, freMTPLsev)

The freMTPLfreq dataset contains records of policy ID, policyholder information, and number of
claims, while freMTPLsev contains only policy ID and claim amounts for those who have claims.
The PolicylD variable serves as a unique identifier which links these two datasets. Some

18

policyholders have multiple claims, resulting in duplicate records of PolicylD in freMTPLsev. For
demonstration purposes, we aggregate claim amounts by policyholder, and choose only the
claim severity as response variable.

Aggregate claim amounts
> sev.aggre = aggregate(freMTPLsevSClaimAmount,
by = list(PolicyID = freMTPLsevSPolicylD), FUN = "sum"

> colnames(sev.aggre)[2] = "ClaimAmount"

Match two datasets by PolicylD. NA values correspond to no claims.
> df.all = merge(freMTPLfreq, sev.aggre, by = "PolicylD", all = TRUE)
> df.allsClaimAmountlis.na(df.allSClaimAmount)] = 0

The resulting dataset has 413,169 observations. The claim amount has high zero inflation, as
less than 4% of policyholders have filed at least one claim. For positive claim amounts, the
distribution is right-skewed, multi-modal, and heavy-tailed. The variables in the aggregated
dataset are described in Table 6.

Table 6: Description of French Auto Insurance Data

Covariate Name Description
- Constant 1. Default class for categorical
L350 Intercept X
variables.
Lq1 CarAge Vehicle age in years. Range: 0 ~ 100
42 DriverAge Driver’s age in years. Range: 18 ~ 99

- B A - Power of the car as ordered categorical:
i3 ,13 ower d ~ O Default is “d”.

Brand of the car: 7 categories. Default is
“Fiat”.

Car gas: Diesel or Regular. Default is
“Diesel”.

Policy region in France: 10 categories.
Default is “Aquitaine”.

Response Name Description

I';14 ~ ;19 |Brand

T3 20 Gas

L3 21 ™~ T'429 | Region

Yil ClaimAmount Claim amount of the policyholder.

Standard R functions are used to convert the above dataframe into matrices covariates
and the response required by the LRMoE package.

Make Y matrix
> sample.size = nrow(df.all)
> Y =matrix(c(rep(0, sample.size), #=tl

19

df.allsClaimAmount, # =yl
df.allsClaimAmount, #=yu
rep(Inf, sample.size) # =tu

),
ncol = 4, byrow = FALSE)
Make X matrix
> X.continuous = cbind(df.allSCarAge, df.allSDriverAge)

> X.power = model.matrix(~df.allSPower, data = df.all) # Default is 'd'
> X.brand = model.matrix(~df.allSBrand, data = df.all) # Default is 'Fiat'
> X.gas = model.matrix(~df.allSGas, data = df.all) # Default is 'Diesel'

> X.region = model.matrix(~df.allSRegion, data = df.all) # Default is 'Aquitaine'

\"

X = matrix(cbind(rep(1, sample.size), # Intercept
X.continuous,

X.power[,-1], X.brand[,-1], X.gas|[,-1], X.region[,-1]), nrow =
sample.size, byrow = FALSE)

Omitted code to name columns of X: colnames(X) = c(...)
4.2 Parameter Initialization

Since the fitting procedure of LRMoE involves multivariate optimization, a good initialization of
parameters will often lead to faster convergence, compared with a noninformative guess. Gui
et al. (2018) have proposed an initialization procedure for a fitting mixture of Erlang
distributions, which involves k-means clustering and the clusterized method of moments
(CMM). This has been used in Fung et al. (2020) and offers reasonably good starting values of
parameters.

Our package contains an initialization function which applies the CMM method to all
component distributions, which is used in conjunction with the base function kmeans. Some
preliminary analysis is needed to determine the number of clusters (components) to use. Since
the positive part of all distributions included in our package is unimodal, a heuristic starting
point is to examine the empirical histogram of data and count the number of peaks (see Figure
3). As an example, the procedure to initialize a three-component LRMoE is given as follows.

Number of components

> n.comp =3

Compute parameter initialization using CMM for severity

> init.3 = CMMSeverity(df.allSClaimAmount, data.matrix(df.all.st), 3)

The CMMSeverity function will return a list, where each element contains the cluster
proportion, zero inflation, and parameter initialization for component distributions. The
initialization can be inspected using standard R methods.

20

The list init.3 returned by the sample code is summarized in Table 7.

Table 7: Sample Initialization of Parameters

Component 1 2 3
Proportion 0.21 0.25 0.54
Zero Inflation 0.96 0.97 0.96
Positive Data:
- Mean 1736.80 | 2052.66 2487.96
) \C/:‘:'Igfllc(';”“’f 2.21 3.00 11.26
- Skewness 10.50 12.54 57.72
- Kurtosis 143.77 193.40 3814.04
- Parameter
Initialization
Gamma shape 0.20 0.01 0.008
scale 8509.01 | 18474.62 | 315719.40
LogNormal meanlog 6.57 6.48 5.39
sdlog 1.33 1.52 2.20
Inverse Gaussian mean 1736.80 2052.66 3487.96
scale 354,51 228.06 19.61
Weibull! shape? 3 3 3
scale 2605.21 | 3078.99 3731.94
Burr! Shapel!? 2 2 2
Shape2?! 5 5 5
scale 12770.62 | 15093.07 | 18293.83

1Set to constant for numerical stability. The scale parameter is obtained by matching the first moment.

The proportion of each cluster and their zero inflation may be used for initializing alpha.init and
zero.init. The summary statistics of positive data are provided to help the user choose a
combination of component distributions. Initialization with extremely large or small parameter

values should be avoided (e.g., Gamma(0.008, 315714.40) for component 3).

All components have a quite large proportion of zero, # so component distributions should
be zero-inflated.

> comp.dist = matrix(c("ZI-lnorm", "ZI-Inorm", "ZI-Inorm"),

nrow = 1, byrow = TRUE)

Assuming no knowledge of covariate influence on response,

21

initialize only the intercept coefficient, where 3 is the reference group
> alpha.init = matrix(0, nrow = 3, ncol = 30)
> alpha.init[,1] = log(c(0.21, 0.25, 0.54)) - log(0.54)
Initialize zero inflation: all components are zero-inflated.
> zero.init = matrix(0, nrow = 1, ncol = 3)
> zero.init[1,] = ¢(0.96, 0.97, 0.96)
Initialize component distribution parameters.
> params.init = list(list(c(6.57, 1.33), ¢(6.48, 1.52), ¢(5.39, 2.20)))
4.3 Parallel Computation

While the LRMoE model provides much flexibility, the user needs to try different combinations
of component distributions and/or different initializations of parameters in order to find a
model which best fits the data. If the fitting function is called sequentially for each model
specification, the computational time scales with the number of LRMoE model candidates,
which is not desirable, especially for large datasets. In this subsection, we will demonstrate how
to integrate our package with doParallel (Microsoft Corporation and Weston 2019), so that
multiple LRMoE models can be simultaneously fitted.

We assume that the user has specified a collection of LRMoE model candidates. Each of them is
represented as a list, which contains a string model.name as an identifier, model specification,
and parameter initialization as described in Section 3.

The model.list contains a list of LRMoE model candidates to fit. # model.list = list(model.1,
model.2, ...)

Each model is structured as a list of inputs # required by the fitting function.
model.1 = list(model.name, n.comp, comp.dist,
alpha.init, zero.init, params.init, hyper.alpha, hyper.params)

The fitting function will be called in a loop function do_fitting, where each iteration outputs one
LRMoE model. For ease of analyzing results, it is recommended to save the fitted model as a
.Rda file, as well as the intermediate output as a .txt file. Additionally, the user may opt to get

email updates on the running status if the code is running on a remote server (see, for example,
Premraj 2015).

do_fitting = function(X, Y, model)
{

model.name = toString(paste(modelSmodel.name, sep="")) rda.name =
toString(paste(model.name, ".Rda", sep=""))

output.name = toString(paste(model.name, ".txt", sep=""))

22

Set a file to save the intermediate update of parameters sink (file = output.name)
tryCatch({model.fit = LRMOE.fit(Y =Y, X = X,

n.comp = modelSn.comp, comp.dist = modelScomp.dist, alpha.init =
modelSalpha.init, zero.init = modelSzero.init, params.init =
modelSparames.init,

penalty = TRUE,

hyper.alpha = modelShyper.alpha, hyper.params = modelShyper.params,
print = TRUE)

save(model.fit, file = rda.name) # Save fitted model

}/

error=function(e){"Error!"; print("Error!")}
)
Save intermediate update of parameters for the current model sink()
Optional: use mailR to get running status. Code is omitted.

}

Finally, the do_fitting function is called in parallel. Depending on the user’s computing
resources, the number of models to fit in parallel (ncore) may be different.

Specify how many models to fit in parallel
> ncore =5
> n.run = length(model.list)
Make computing clusters: standard procedure
> ¢l = makePSOCKcluster(ncore)
> registerDoParallel(cl)
Call fitting functions in parallel
> foreach(b = 1:n.run) %dopar% {do_fitting(X, Y, model.list[[b]])}
Stop computing clusters: standard procedure
> stopCluster(cl)
4.4 Fitting Results and Model Selection

For illustration purposes, we fit only a selected number of LRMoEs to the entire French auto
insurance dataset. The fitted loglikelihood, AIC, and BIC are summarized in Table 8.

23

Table 8: Fitting Results of French Auto Insurance Data

g=3 Loglikelihood AIC BIC g=4 Loglikelihood AIC BIC
1] -183913 367965 368719 lill -183521 367246 368361
iwl -183928 367993 368748 1 -183749 367702 368817
will -184078 368293 369047 bill -183784 367774 368900
b -184099 368337 369102 will -183798 367800 368915
lib -184112 368363 369129 bilw -183954 368114 369240

g=5 Loglikelihood AIC BIC g=6 Loglikelihood AIC BIC
bwliw -183576 367424 368910 bl -183444 367226 369074
bllil -183590 367452 368938 liwibl -183450 367238 369085
il -183603 367476 368951 wlli -183466 367269 369105
i -183604 367478 368954 liwlll -183471 367279 369115
wllil -183654 367578 369054 liblll -183491 367321 369168

Notes: Component distributions are represented by first letter; for example, | for lognormal, b for Burr, etc. All
components are zero-inated. Stopping criterion is < 0:05 improvement in loglikelihood, or 500 iterations. For each

g, loglikelihood values are in decreasing order. The overall optimal values are bolded.

In most cases, adding more components will increase the fitted loglikelihood (e.g.,
consider models iwl, will, wllil, and liwlll). The models selected by AIC and BIC have six and
four components, respectively. In this particular setting, BIC heavily penalizes models with
more components, since the sample size is large, and adding one component roughly
increases the number of parameters by 30 (the number of logit regression coefficients).

Apart from AIC and BIC, cross-validation (CV) is an alternative model-selection criterion
which avoids overfitting with too many latent components. For example, Gui et al. (2018)
consider a 10-fold CV for a fitting mixture of Erlangs, where the averaged loglikelihood on
the test sets is used as a score function to select the optimal number of components.

To implement CV, our package provides a function to calculate the loglikelihood of a fitted
model on a test dataset, which can be incorporated in the do_fitting function above with
additional input of test sets X.test and Y.test.

X.test, Y.test: Test sets formatted as required by LRMOoE
model.fit: A fitted model returned by LRMOoE.fit function

> LRMoE.loglik(X = X.test, Y = Y.test, model = model.fit)

24

4.5 Pricing and Reserving Functions

Our package contains a collection of functions related to actuarial pricing, reserving, and
risk management, including calculation of mean, variance, VaR, CTE, LEV E[(Y A u)], and SL
premium E[(Y - d).] of the response variable. These functions start with root predict,
followed by appropriate quantities of interest (mean, VaR, quantile, CTE, limit, excess) and
corresponding function arguments.

As an illustration, we consider three policyholders in Table 9, where A has no claim
history, B has a medium-sized claim, and C has a large claim. Below is the sample code to
calculate different quantities of interest.

Mean and variance of claim amount of Policyholders A, B and C.
Variance is infinite due to Burr component.
> PredictMeanPrior(X[c(1, 33, 96),],

Table 9: Selected Policyholders in French Auto Insurance Dataset

Claim ID Car Age | Driver’s Car Brand Gas Region
Age Power
A 0 1 0 46 g JK Diesel A
B 302 33 1 61 g JK Regular IF
C 10870 96 0 51 i JK Regular IF

Table 10: Pricing Calculation for Selected Policyholders in French Auto Insurance Dataset

Premium Principle A B C
Individual- | E[Y] 97.49 | 90.25 84.65
level E[(Y —1000)+] | 78.76 | 69.81 58.29
E[Y A100000] | 63.24 | 60.86 63.33
Portfolio- | VaR(90) 108.65 | 100.59 94.34
level VaR(95) 121.14 | 11215 | 105.19
CTE(70) 117.20 | 10851 | 101.77
CTE(80) 126.58 | 117.19 | 109.91
CTE(90) 149.28 | 13820 | 129.62

Notes: (For portfolio-level premium principles, the allocation is based on the relative size of pure premium, where

w; = EY;] - EY;]
the weight for Policyholderiis [- Z-/ [J. For each policyholder and premium principle, the
calculation is done based on both prior probability (left column) and posterior probability (right column))

+ model fitSalpha.fit, model.fitScomp.dist,
+ model fitSzero.fit, model.fitSparams.fit)

[1
25

[1,] 97.48500
[2,] 90.25394
[3,] 84.64872
99% VaR of claim amount of Policyholders A, B and C.
> PredictVaRPrior(X[c(1, 33, 96),],
+ model fitSalpha.fit, model.fitScomp.dist,
+ model.fitSzero.fit, model. fitSparams.fit,
+ prob=0.99)

[1]

[1,] 1209.099

[2,] 1203.652

[3,] 1249.037

Mean excess of claim amount (d=1000) of Policyholders A, B and C.

> PredictLimExPrior(X[c(1, 33, 96),],
+ model fitSalpha.fit, model.fitScomp.dist,
+ model fitSzero.fit, model.fitSparams.fit,
+ limit = 1000)

[1]

[1,] 18.72962

[2,] 18.28337

[3,] 26.36306

Actuarial pricing calculation can be done based on either individual loss distributions, or the
aggregated loss distribution of the entire portfolio. Both can be achieved using built-in
functions in our package.

On the individual level, the functions above can be called directly to calculate the pure
premium E[Y], as well as the premium value in the presence of a policy deductible (E[(Y - d)+])
or policy limit (E[(Y A u)]).

The first part of Table 10 summarizes the premium calculation for policyholders A, B, and C,
based on individual-level premium principles.

On the portfolio level, the dataset.simulator function (see also Section 4.6) will simulate one
response value (i.e., claim amount) for each individual policyholder, which can be summed up
to the aggregated portfolio loss under one possible scenario. Repeated simulation of the entire

26

portfolio will produce the empirical distribution for the aggregated loss. The VaR and CTE of the
aggregated loss can be obtained from the simulated sample, which are useful for setting the
insurer’s total reserve. In addition, the VaR and CTE can be allocated back to policyholders as a
loaded premium, according to some weighting scheme which reflects policyholders’ relative
riskiness (e.g., relative magnitude of their pure premium). The second part of Table 10
summarizes the premium calculation for policyholders A, B, and C, based on portfolio-level
premium principles.

4.6 Model Visualization

After fitting and choosing an appropriate LRMoE model, the user can visualize it with in-
package plotting functions, or create more customized plots using generic simulation
functions (e.g., data.simulator) combined with base R plotting utilities or other dedicated
packages (e.g., ggplot2). In this subsection, we will use the six-component lIblll model for
demonstration.

Latent Class Probabilities

The logit regression in LRMoE assigns each policyholder into latent risk classes based on
covariates. Given a fitted mode and a vector of covariates, the probability of latent classes
can be computed and visualized using the built-in predict.class.prob and
plot.ind.class.prob functions.

For policyholders with known claim history, it may be more informative to consider the
posterior latent class probabilities by calling corresponding functions for posterior
probabilities. Consider again the policyholders in Table 9. The code to calculate and plot
posterior probabilities is shown below, and the plots are given in Figure 2.

Predict latent class probabilities, based on covariates and a model
> PredictClassPrior(X[c(1,33,96),], model.fitSalpha.fit)

comp 1 comp 2 comp 3 comp 4 comp 5 comp 6
[1,] 0.1213162 0.07381480 0.5416097 0.03613851 0.08855876 0.1385620
[2,] 0.1404270 0.07858723 0.4647998 0.04097918 0.08278394 0.1924228
[3,] 0.2082516 0.10479211 0.3364129 0.04198693 0.10295946 0.2055970

27

Figure 2: Prior and posterior latent class probabilities for selected policyholders

Policyholder A Policyholder B Policyholder C

1.00-

e
v}
o
'
e
o
@
i

0.75-

; = | = |
1 1

3 : 3 : 3

g 0.50- 3 § 0.50- 3 § 0.50-

2 B - = | B =

o o o

g N: N:

s | 5§ 3 & 3
0.25- 0.25- 0.25
0.00- 0.00- 0.00-

prior Postenor prior Posteror Prior Posterior

Notes: Component 3 (Burr(1.41, 1, 24073)) corresponds to the tail, while Component 5 (Lognormal(6.23, 1.57))
corresponds to the largest spike in the dataset

Predict posterior probabilities, based on covariates, history and a model
> PredictClassPosterior(X[c(1,33,96),], Y[c(1,33,96),],

+ model.fitSalpha.fit, model.fitScomp.dist,
+ model.fitSzero.fit, model.fitSparams.fit)
compl comp 2 comp 3 comp 4 comp 5 comp 6

[1,] 1.174421e-01 0.06931930 0.5521331 3.399789e-02 0.08667928 1.404283e-01
[2,] 2.577365e-294 0.06546023 0.0185750 1.509372e-230 0.91596478 8.194626e-25
[3,] 0.000000e+00 0.12230349 0.4648738 0.000000e+00 0.41282273 0.000000e+00

Plot latent class probabilities for Policyholder A

Function returns a ggplot2 object: optional to edit plot title

> PlotPropPosterior(Y[1,], X.1, model.fitSalpha.fit, model.fitScomp.dist,
+ model.fitSzero.fit, model.fitSparams.fit) +

+ ggtitle("Policyholder A")

Overall Goodness-of-Fit

The overall goodness-of-fit can be examined by contrasting the empirical histogram
against the fitted density curve and the Q-Q plot of empirical and fitted quantiles. These
can be produced with the data.simulator function included in our package, combined with
basic R plotting functions. The corresponding plots are shown in Figure 3.

28

Simulate exact responses, given a set of covariates and a fitted model

> sim.size = nrow(X)

> model.sim = SimYSet(X, model.fitSalpha.fit, model.fitScomp.dist,
model.fitSzero.fit, model.fitSparams.fit)

Figure 3: Overall goodness-of-fit of positive claims in the French auto insurance dataset

Histogram and Fitted Density of log(Y)

30

25

Density

Q-Q Plot

Fitted Quantiles
500000 1000000 1500000 2000000

0

T T T T T
0 500000 1000000 1500000 2000000

Theoretical Quantile
Notes: (Left: all data points; right: non-extreme data points)

29

Density

Fitted Quantiles

0.0010 0.0020 0.0030

0.0000

10000 15000 20000

5000

Histogram and Fitted Density of Y

0 1000 2000 3000 4000

Q-Q Plot

T T T I T
0 5000 10000 15000 20000

Theoretical Quantile

Only use positive values for plotting density
> Y.pos = Y[which(Y[,2]>0),2]

> sim.Y.pos = model.sim[which(model.sim[,1]>0),1]

Use standard R functions for plotting histograms (all data points)

> hist(log(Y.pos), breaks = 100, xlim = c(2, 12), probability = TRUE,

+ xlab ="Y", main = "Histogram and Fitted Density of log(Y)")

> lines(density(log(sim.Y.pos), from =2, to = 12), col = "red", Iwd = 2)

Use standard R functions for Q-Q plots
> qqplot(Y[,2], model.sim[,1], main = "Q-Q Plot",
+ xlab = "Theoretical Quantile", ylab = "Fitted Quantiles")

> abline(a =0, b =1, col = "red", Iwd = 2)

Covariate Influence

The partial dependence plot is commonly used in machine learning to investigate the influence
of a particular covariate on the response, assuming independence among covariates (Friedman
2001). For example, the marginal effect of a covariate on the mean claim amount can be
obtained using the following steps:

1. Fix the covariate at a particular value (say, car brand = “F”) for all policyholders, while
other covariates remain unchanged;

2. Use PredictMeanPrior function to compute mean response values by policyholder (see
Section 4.5);

3. Compute the grand mean of all values in step (2), which averages out the effect of other
covariates and yields the mean response value when the car brand is of type “F”;

4. Repeat steps (1)—(3) for a range of values of the same covariate of interest; for example,
varying car brand from “F” to “VAS”.

The procedure above can be generalized to continuous covariates and other quantities of
interest, such as the quantile of the response variable. The covariate influence plot graphically
illustrates how the characteristics of a policyholder are associated with a particular measure of
the response variable. For example, plotting the mean (or VaR/CTE) of the response variable
against car brand reflects how a policyholder’s overall riskiness (or tail risk) is related to the car
brand. In terms of implementation, a sample script is provided on the accompanying demo
website of the package.

30

Table 11: Covariate influence: Car Brand

Brand Mean VaR(99) CTE(99)
F 86.34 1336.12 5913.98
JK 91.48 1204.76 7999.49
MCB 83.41 1381.02 5684.49
OGF 83.85 1444.18 5422.59
Other 91.44 1352.56 6583.96
RNC 85.10 1329.38 5972.67
VAS 83.67 1421.00 5583.46

Figure 4 shows the influence of covariates Brand, Region, and Car Age, which may be
interpreted as follows. For car brand, JK (Japanese except Nissan, or Korean) is generally
riskier. In terms of tail risk, it is interesting to observe that JK has the lowest VaR but the
highest CTE compared with others. Also, compared with other regions, policies issued in
regions A (Aquitaine) and HN (Haute-Normandie) may be considered riskier. In addition,
older cars are generally associated with higher risks.

31

87.5-

20~

87-

o-

Figure 4: Covariate Influence

1300~

1200-

1480-

o-

Covariate Influence: Brand
VaR(89)

JK MCB OGF Other RNC VAS

Covariate Influence: Region
VaR(e9)

Covariate Influence: Car Age
VaR(eg)

32

8000~

7000~

7500-

7000-

,._
2
al
3
g
3
;!'

7500~

7000-

5. Summary and Outlook

This paper presented a new R package, LRMOoE, for actuarial loss modelling. In this first version,
the package can cover the most basic need to fit an LRMoE model, as well as helping the user
visualize the fitted model and calculate the insurance premium. There are several future
developments in our plan, including:

Model-selection tools: As of the current version, model selection is done by AIC/BIC/CV,
all of which require the user to choose and run a selection of models. Some automated
model-selection procedures may be potentially incorporated in the package (e.g., SCAD-
type penalty in Fan and Li 2001, and Yin and Lin 2016).

Feature-selection tools: Datasets usually contain a large number of covariates, but not
all are important for predicting the response. While plots of covariate influence may
offer some intuition of their relative importance, it may be more insightful to quantify
their influence and provide a function to automatically choose the most influential
covariates.

User interface: In Section 4, the data pre-processing step requires the user to manually
convert the data into a specific format required by the package. This may be better
completed by adding generic pre-processing functions into the package, or enabling
formula interpretation (such as LRMoE.fit(formula =y ~ x)).

33

References

Blostein, M., and Miljkovic, T. (2019). “On modeling left-truncated loss data using mixtures of
distributions.” Insurance: Mathematics and Economics, 85, 35—-46. ISSN 0167-6687.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). “Maximum likelihood from incomplete data
via the EM algorithm.” Journal of the Royal Statistical Society: Series B (Methodological), 39(1),
1-22.

Dutang, C., and Charpentier, A. (2019). CASdatasets: Insurance datasets. R package version 1.0-
10.

Fan, J., and Li, R. (2001). “Variable selection via nonconcave penalized likelihood and its oracle
properties.” Journal of the American Statistical Association, 96(456), 1348-1360.

Friedman, J.H. (2001). “Greedy function approximation: a gradient boosting machine.” Annals
of Statistics, 29(5), 1189-1232.

Fung, T.C., Badescu, A.L., and Lin, X.S. (2019a). “A class of mixture of experts models for general
insurance: Application to correlated claim frequencies.” ASTIN Bulletin, 49(3), 647—688.

Fung, T.C., Badescu, A.L., and Lin, X.S. (2019b). “A class of mixture of experts models for general
insurance: Theoretical developments.” Insurance: Mathematics and Economics, 89, 111-127.

Fung, T.C., Badescu, A.L., and Lin, X.S. (2020). “A new class of severity regression models with
an application to IBNR prediction.” North American Actuarial Journal, 25(2), 1-26.

Fung, T.C., Badescu, A.L., and Lin, X.S. (2021). “Fitting censored and truncated regression data
using the mixture of experts models.” Available in SSRN:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3740061

Grin, B., and Leisch, F. (2008). “FlexMix version 2: Finite mixtures with concomitant variables
and varying and constant parameters.” Journal of Statistical Software, 28(4), 1-35.

Gui, W., Huang, R., and Lin, X.S. (2018). “Fitting the Erlang mixture model to data via a GEM-
CMM algorithm.” Journal of Computational and Applied Mathematics, 343, 189-205.

Jiang, W., and Tanner, M.A. (1999). “On the identifiability of mixtures-of-experts.” Neural
Networks, 12(9), 1253-1258.

Jordan, M.I.,, and Jacobs, R.A. (1994). “Hierarchical mixtures of experts and the EM algorithm.”
Neural Computation, 6(2), 181-214.

Lee, D., Li, W.K., and Wong, T.S.T. (2012). “Modeling insurance claims via a mixture exponential
model combined with peaks-over-threshold approach.” Insurance: Mathematics and
Economics, 51(3), 538-550.

Leisch, F. (2004). “FlexMix: A general framework for finite mixture models and latent class
regression in R.” Journal of Statistical Software, 11(8), 1-18.

McLachlan, G., and Peel, D. (2004). Finite Mixture Models. John Wiley & Sons.

34

Meng, X.L., and Rubin, D.B. (1993). “Maximum likelihood estimation via the ECM algorithm: A
general framework.” Biometrika, 80(2), 267—278. ISSN 0006-3444.

Microsoft Corporation and Weston, S. (2019). DoParallel: Foreach Parallel Adaptor for the
“parallel” Package. R package version 1.0.15, https://CRAN.R-project.org/package=doParallel

Miljkovic, T., and Griin, B. (2016). “Modeling loss data using mixtures of distributions.”
Insurance: Mathematics and Economics, 70, 387—396. ISSN 0167-6687.

Premraj, R. (2015). MailR: A utility to send emails from R. R package version 0.4.1,
https://CRAN.R-project.org/package=mailR

Scollnik, D.P., and Sun, C. (2012). “Modeling with Weibull-Pareto models.” North American
Actuarial Journal, 16(2), 260-272.

Yin, C., and Lin, X.S. (2016). “Efficient estimation of Erlang mixtures using iSCAD penalty with
insurance application.” ASTIN Bulletin, 46(3), 779-799.

35

Canadian Institut
Institute of canadien
Actuaries des actuaires

© 2022 Canadian Institute of Actuaries

Canadian Institute of Actuaries
360 Albert Street, Suite 1740
Ottawa, ON K1R 7X7
613-236-8196
head.office@cia-ica.ca

cia-ica.ca
seeingbeyondrisk.ca

fivlin

The Canadian Institute of Actuaries (CIA) is the qualifying and governing body of the actuarial
profession in Canada. We develop and uphold rigorous standards, share our risk management
expertise, and advance actuarial science for the financial well-being of society. Our more than
6,000 members apply their knowledge of math, statistics, data analytics, and business in
providing services and advice of the highest quality to help ensure the financial security of all

Canadians.

36

