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Abstract 

We present some of the results developed in the thesis of Giannini (2020), where an 
extensive study is performed on the effectiveness of several mortality/longevity-linked 
financial derivatives in hedging annuity portfolios’ longevity risk. We will not treat cashflow 
hedges like survivor swaps and caps but rather will focus on the value hedges provided by 
mortality (q-) forwards and puts and Kappa (K-) forwards and puts. We will apply the key q-
hedging framework of the seminal paper of Li and Luo (2012) and the key K-hedging 
outlined in the articles of Chan et al. (2014), Tan et al. (2014) and Li et al. (2019). We will 
restrict ourselves to static hedging, but our annuity portfolios will be composed of multiple 
cohorts from the Canadian population. The K-instruments mentioned above are based on 
the two time-varying indexes of the model proposed by Cairns et al. (2006) and known 
familiarly as M5. 

Preamble 
The longevity risk and why bother 

The focus on longevity risk is relatively new outside of the insurance industry and has until 
recently been largely ignored by pension plan sponsors, governments and individuals whose 
focus was primarily on the management of investment risks. Low interest rates, the aging 
population and the anemic growth prospects in most developed economies, and the lower 
expected investment return they entail, have contributed to a greater awareness of the 
longevity risk and the need for a wider range of solutions through financial markets. 

Longevity risk is the danger that we outlive our retirement savings, and the ensuing 
challenge of maintaining the living standard to which we are accustomed or affording ever-
increasing health care and retirement housing costs. Longevity risk also affects all 
organizations, private or public, which guarantee a lifetime income, death benefits and the 
reimbursement of long-term health care or funding of social services. As such, individuals, 
pension plans, insurers and taxpayers may be financially affected by the improvements of 
survival rates. 

Longevity risk differs from investment risk as it is not diversifiable. Private pension plan 
sponsors wishing to manage their longevity risk have little flexibility and only a few options. 
They may transfer it to insurers through annuity contracts or enter complex bespoke 
longevity swap arrangements. Insurers also lack flexibility in effectively managing longevity 
and mortality risks. New effective risk-hedging solutions would increase their capacity at 
managing longevity and mortality risk. 

Changes to the regulatory framework should also support the utilization of 
longevity/mortality hedging products. The regulations that pertain to the insurance industry 
are under review, and as regulators lean towards a greater harmonization globally, we can 
expect they will promote the use of internal models to manage longevity and mortality risks 
more actively. The incentive for doing so could include the recognition for such efforts 
through capital relief, a better appreciation of the risks and more appropriate pricing of life 
products. 

As plan sponsors and insurers turn their attention to longevity risk, solutions incorporating 
the broader financial market will be essential and will benefit all stakeholders by introducing 
a more efficient pricing mechanism for longevity and mortality risks. 



 

The appeal of longevity-linked products to investors who are normally not exposed to 
mortality or longevity risks should stem from the longevity risk premium paid and the low 
correlation of these risks with any other market risk. This paper is part of an approach to 
develop effective and practical market solutions to hedge longevity and mortality risks. The 
development of that market hinges on the two competing requirements of devising a small 
set of transparent indexes which are yet varied enough so that hedging does not entail too 
much population basis risk; i.e., the risk of hedging one population’s survival with another. 

The indexes and hedging instruments presented in this paper are effective in capturing the 
variability of mortality rates so that only one mortality index would be needed to cover the 
hedging of annuities or life insurance products for several retirement ages. Moreover, the 
possibility of developing longevity hedging instruments effective in cross-population settings 
should enhance their appeal to broad market participation. 

1. The CBD models 
1.1 CBD-M5 

Cairns et al. (2006) proposed the following model for the logit of mortality rates:  

 
where 

 is the probability that an individual aged x at time t dies between t and t +1; 

 is the mean of the age range considered (e.g., = 82 for the range 65–99); 

 for i = 1, 2, the time-varying parameters of the model. 
The model is calibrated, using Ordinary Least Square (OLS), to the historical mortality rates 
of Canadian women whose ages range from 65 to 99 for the period 1970–2016. The 
historical data are provided by the Human Mortality Database (HMD). We have also fitted 
the parameters by maximum likelihood method (Cairns et al. 2009) and we have obtained 
practically the same fit. 

Once we have the time-varying parameters Kt(1), and Kt(2), we select a VARIMA dynamic that 
models them jointly. Following Li et al. (2019) we use the bivariate random walk with drift, 
which is a parsimonious model offering a good fit of the data. More specifically, we have 

 
where 

  the time-varying parameters; 

  the constant drifts; 



 

 
the Cholesky decomposition of the covariance matrix of the 

residuals; 

  independent standard normal error terms. 

Here are a few graphical representations of the fit and of the factors for Canadian women of 
different ages. It is well known that M5 does not provide the best fits of the data. We will 
compare it later to M7 fits. 

 
1.2  Properties of the indexes 

As already mentioned in Chan et al. (2014), the CBD mortality indexes possess the following 
three desirable properties: 

1. Their calculation is transparent and easily interpretable. The first index, Kt(1), 
represents the general level of the mortality curves all ages. A reduction of Kt(1) 

implies an overall reduction of mortality. The second index, Kt(2), represents the 
gradient of the mortality curve. A reduction of Kt(2) implies that mortality at older 
ages (x > �̅�𝑥) improves more rapidly than at younger ages (x < �̅�𝑥). Education of both 
indexes for a closed pension plan constitutes a “double whammy” on its liabilities.1 

  

 
1 We will consider mainly the point of view here of a pension plan hedging its longevity risk, but similar 
comments can be made for the hedging of mortality risk in a life insurance portfolio. For example, the “double 
whammy” situation in that case is when there is a reduction of, and an increase of Kt(2). This is important since 
we do expect to generate a lot of interest from market participants wanting to do these hedging activities as 
well. 



 

2. The indexes are small in dimension but are able to accurately represent the age 
patterns of mortality improvement.2 The possibility of using only two indexes for 
each population and gender should improve the liquidity of the instruments based 
on these indexes.3 

3. The model possesses the new data-invariant property. That is, as new data are 
considered, the past values of the indexes remain unchanged. Hence maintaining the 
indexes is easy. 

1.3 Alternate model to keep things in check: the CBD-M7 model 

As mentioned earlier, we have tested the hedging strategies with Monte Carlo simulations 
of mortality trajectories generated by M5, the Li–Lee model and M7 (see Giannini 2020). 
These tests with different types of models give us robust appraisals of the hedging efficiency 
and, in particular, avoid some type of “model inbreeding” inherent in testing M5 hedges 
only with M5 generated trajectories. As we will see, M7 offers a much better fit of the data 
and takes into account cohort effects in particular. We also tested the hedging using the Li–
Lee model (applied to the Canadian female and male populations). It does not provide as 
good a fit as M7, but it is a standard model of the actuarial literature. 

M7 is another model proposed by Cairns et al. (2009). The basic equation is: 

 
where 

 is the mean of ; 

 is the third time-varying parameter of the model; 

 is the term associated to the cohort born in the year t – x. 

The factors of the model are still easy to compute and easily interpretable: accounts for 
the curvature of the logit of mortality rates, and captures cohort effects. It contains 

M5 as a nested model: = = 0 for all x and t, in the equation above. M5 does not 
need an indentifiability constraint but we do need to impose the following three 

identifiability constraints to the cohort effect of M7:  and 

. Unfortunately, the addition of the cohort effect term (and its constraints), with 
its dependence  on x, implies that the model no longer has the new data-invariant property. 

 
2 We have tested the hedging efficiency of instruments based on these indexes using M5, the Li–Lee model 
and M7 to generate mortality trajectories. The three models provide very similar results (see Giannini 2020). 
With the knowledge that our results are robust, we will only present the results for M7 in this paper. 
3 We have compared the hedging effectiveness of Kt(1) based instruments and Kt(2) based instruments 
separately (see Giannini 2020). When an instrument is used for hedging, the additional contribution of the 
corresponding Kt(1) instrument in risk reduction is very marginal. We will therefore focus on Kt(1) instruments 
only. 



 

But the fit with M7 is greatly improved compared to M5. This is well documented for the 
populations of England and Wales (Cairns et al. 2009). We will show that the situation is 
similar for the Canadian population. We will then use M7 to generate mortality rate 
trajectories taking its factors into account when we test hedging efficiency. Liu and Li (2018) 
use M7 to study the efficiency of q-forward hedging in the populations of England and 
Wales. 

Graphically at least, M7 seems to offer a better fit than M5: 

 
And this is confirmed with the following statistics of the two fits: 

Model M5 M7 

Maximum log-likelihood -12,047 -9,604.4 

Number of parameters 94 222 

Number of observations 1,645 1,645 

AIC 24,282 19,653 

BIC 24,790 20,853 

MSE 0.0328 0.0394 

MAPE 0.0369 0.0263 

Here AIC and BIC denote, as usual, the Akaike and Bayesian information criteria. The only 
test M7 is not winning is the Mean Square Error (MSE). But, since its Mean Absolute 
Percentage Error (MAPE) is lower, it means that the M7 fit is hampered by at least one 
outlier. And indeed, when we do not include the error for the eldest age of 99 (i.e., we 
restrict the age window to 65–98, say), we get MSEs of 0.0274 and 0.0234 for M5 and M7 
respectively. 

  



 

1.4 Additional calibration of the model parameters to incorporate the risk premium 

In order to price all instruments in each of the three models, we have used the Canonical 
Valuation procedure, outlined in Li and Ng (2011), and we have applied it to the EIB/Paribas 
longevity bond (Cairns et al. 2009. The bond has a tenor of 25 years and it is linked to the 

survival of the male population of England and Wales. It was priced with a premium of = 
0.002 in the equation 

 

where B (0, t) is the discount factor for time t and  is the (Best Estimate) 
survival forecast of the population at time t in the historical measure. 

With any one of the three models, we select a cohort (e.g., Canadian women aged 65) and 
perform Monte Carlo simulations where we generate 10,000 paths of mortality rates with 
the model, we value the obligation for each path and we solve for the probabilities that give 
us the price P calculated with the formula above. These probabilities define our risk-
adjusted (RA) measure; i.e., 

 
We can then use these probabilities to price any instrument linked to the 
mortality/longevity of the selected cohort. Mortality (q-) instruments are linked to a single 
cohort but in the case of K-instruments we use the cohort for the mean age, = 82, 
of the age window considered, to price the instruments. Here, as an example, are the 
adjustments made to the expected trajectories for the two Kappa factors of M5. 

 



 

2. The portfolio of annuities 
We consider a synthetic portfolio composed of a total of 4,000 annuitants in 20 cohorts, 
with 275 annuitants for each of the cohorts aged 65–69, 200 annuitants for each aged 70–
74, 175 for each aged  75–79, and 150 for each aged 80–84. The annuities are immediate 
whole life annuities which pay an amount of $1 to all surviving individuals.   For the 
purpose of this study, we have focused on Canadian women cohorts. If k = 1:4000 denotes an 
annuitant, let ak denote her age at time 0. The assets of the pension plan are calculated 
using the RA measure: 

 

where  is the survival rate for age  is the discount rate to time t, and 
w is the maximum age considered, which we assume to be 100 years. Each annuitant, k, 

generates a sequence of liabilities
 

, where
  

is the time of death of the
  

annuitant. The quantity to hedge is the surplus , which is convenient to 

consider per contract: . If H denotes the discounted payoff of the hedging 

portfolio then we will look at the distribution of  when we hedge 
with forwards and  when we edge with puts.  
Each Monte Carlo simulation we perform to test the hedges involves gen erating the time of 
death, Tk, of each annuitant. With these realizations we calculate the liability payoff as well 
as the payoffs of the hedging instruments. We then compare the descriptive statistics of the 
distributions to assess the hedges’ effectiveness. The times of death are generated as the 
first jump of a Cox process whose mortality trajectories are generated by realizations from 
M7 (M5 or Li–Lee). 

3. The hedging instruments 
We introduce the K-instruments first. We will compare their hedging efficiency   with that of 
the mortality instruments which we describe afterwards. 

3.1 K-forwards 

Let N denote the notional of the transaction: 

 
Let t0 denote the time at which the forward is initiated and let T denote its maturity. Let N = 

$1 for simplicity. The payoff from PP zczc perspective is where  is 



 

the fixed mortality index and is the realized index at time T with . Its value at time 

is 

 
As usual, we do not want an upfront payment to be made, so and as a result 

. As we mentioned earlier, we will only consider the instruments based on , 

since they are ones that matter, and we will let . In order to simplify notations, 
the letter K will be used throughout to indicate the level of the fixed side and the exercise 
level of the puts for all the hedging instruments. Its meaning should be clear in the context 
of each instrument. 

3.2 K-puts 
The payoff for the long position is and its value (premium) at time 

 is . We will always assume (in this paper) that 

 and we will say that the put is At-The-Money (ATM).4  
We now introduce the mortality instruments. 

3.3 q-forwards 

 

Again, let N = $1. So the payoff from PP zczc perspective is , where K is 
the fixed mortality rate and  is the realized mortality for age x during year T. Its value at 
time t :  is  

 
As usual, we do not want an upfront payment to be made, so  and . 
  

 
4 We will focus here on puts and portfolio insurance strategies. It is  also possible to hedge the portfolio by 
shorting calls, but the covered call strategy is only deployed when small movements of mortality rates are 
anticipated as it  provides only a small cushion against lower mortality rates. 

 



 

3.4 q-Puts 

The payoff for the long position is  and its value (premium) at time 
 is . Again, we will let  and 

we will say that the put is ATM. 

4. Sensitivities and key q-durations, and key K-durations hedges 
The concept of key q-duration is due to Li and Luo (2012). The idea as described therein is to 
use the correlation of mortality rates for adjacent ages and adjacent years in order to select 
interspersed years and ages that capture the sensitivities of the portfolio to movements of 
the mortality rate surface. The sensitivities are calculated with the M7 model. Very similar 
results are obtained in Giannini (2020) for the Li–Lee model and M5. We apply Li and Luo’s 
method directly to derive the following q-hedging instruments: 

Cohort k Age in 2017 nk 
Age and 
maturity Notional w(j,k) 

1 68 1 (70, 2019) 19.0100 

  2 (75, 2024) 17.7177 

  3 (80, 2029) 13.0434 

  4 (85, 2034) 8.4472 

  5 (90, 2039) 4.4354 

2 72 1 (75, 2020) 9.2600 

  2 (80, 2025) 7.6359 

  3 (85, 2030) 4.8908 

  4 (90, 2035) 2.5296 

3 76 1 (80, 2021) 6.6702 

  2 (85, 2026) 4.4962 

  3 (90, 2031) 2.3113 

4 80 1 (85, 2022) 4.2232 

  2 (90, 2027) 2.1773 

In all our mortality hedging portfolios, we will always take all the key instruments (nk) 
associated with a cohort. Hence, we can index the portfolios by the cohort number only. So, 
we can denote by F1, for instance, the portfolio of forwards {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)}. 
Similarly, F1,2 will denote the set of forwards {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 
3), (2, 4)}; etc. We will use the notation P1, P1,2, etc., similarly for the portfolios of puts. 

The concept of key K-duration, inspired by the key q-duration of Li and Luo (2012), is 
developed in Tan et al. (2014) and then further investigated in Li et al. (2019). As mentioned, 
Giannini (2020) showed that hedging instruments based on Kt(2) were very marginally 
contributing to the risk reduction, so we will focus only on Kt(1) instruments for the following 
key durations. Again, the sensitivities shown here are calculated with M7, but Giannini 
(2020) showed very similar results for M5 and Li–Lee: 

  



 

 j = 1 j = 2 j = 3 j = 4 

Key year 2022 2027 2032 2037 

 -0.07903 -0.6496 -0.5339 -0.4388 

 -0.8988 -0.7722 -0.5817 -0.3679 

Wj K1 1.1373 1.1887 1.0894 0.8385 

5. Static hedging with mortality and K-instruments 
5.1 Mortality (q-) hedging 

In order to test the efficiency of the key q-hedging method with forwards and puts 
(separately), we used M7 to generate mortality trajectories and calculated the descriptive 
statistics of the distributions of the payoffs of the annuity portfolio when incremental sets of 
hedging instruments were used. Very similar results were obtained for M5 and Li–Lee (see 
Giannini 2020). These descriptive statistics were first used by Fung et al. (2019) to test the 
efficiency of survivor (s-) swaps and caps. 

Portfolio Mean Std. Dev. Skewness Kurtosis VaR99 ES99 

Unhedged 0.1976 0.2880 0.0314 2.9281 -0.4754 -0.5471 

F1 0.1144 0.1928 -0.1083 2.9093 -0.3529 -0.4072 

F1,2 0.0782 0.1446 -0.2002 2.9614 -0.2841 -0.3269 

F1,2,3 0.0554 0.1108 -0.2561 3.0538 -0.2297 -0.2624 

F1,2,3,4 0.0428 0.0921 -0.2413 3.1240 -0.1906 -0.2234 
 

Portfolio Mean Std. Dev. Skewness Kurtosis VaR99 ES99 

Unhedged 0.1976 0.2880 0.0314 2.9281 -0.4754 -0.5471 

P1 0.1473 0.2433 0.3401 3.1313 -0.3694 -0.4234 

P1,2 0.1261 0.2205 0.5533 3.3791 -0.3106 -0.3537 

P1,2,3 0.1132 0.2039 0.7382 3.6741 -0.2652 -0.2990 

P1,2,3,4 0.1062 0.1930 0.8650 3.9303 -0.2307 -0.2649 
 
Where VaR99 and ES99 mean the Value-at-Risk and Expected Shortfall both at a 99% 
confidence level. 

If we were to measure the efficiency of the hedges in terms of a reduction of the payoffs 
standard deviation, we would conclude overwhelmingly that q-forward hedges are superior 
to put hedges. But this measure ignores other features/moments of the distribution, like its 
skewness in particular. If we look instead at the reductions in VaR and Expected Shortfall we 
get a more balanced conclusion on the hedging efficiency of each instrument. Overall, the 
full hedging portfolios with 14 q-forwards or q-puts reduce the Expected Shortfall by more 
than half. Also, hedging with puts is less expensive than with forwards even though our puts 
are all ATM. 



 

 

 
 

  



 

5.2 K-hedging 

We will now test K-hedging. Again the results obtained from the three models are very 
similar. Here are the results for M7: 

Portfolio Mean Std. Dev. Skewness Kurtosis VaR99 ES99 

Unhedged 0.1946 0.2922 0.0153 2.9387 -0.4748 -0.5617 

F2022 0.1569 0.2355 0.0105 2.9254 -0.3865 -0.4534 

F2022, 2027 0.1078 0.1644 -0.0011 2.9614 -0.2697 -0.3183 

F2022, 2027, 2032 0.0638 0.1985 -0.0123 3.0538 -0.1856 -0.2178 

F2022, 2027, 2032, 2037 0.0335 0.0850 -0.0391 3.1240 -0.1607 -0.1856 
 

Portfolio Mean Std. Dev. Skewness Kurtosis VaR99 ES99 

Unhedged 0.1946 0.2922 0.0153 2.9387 -0.4748 -0.5617 

P2022 0.1722 0.2636 0.1977 3.0065 -0.4027 -0.4692 

P2022, 2027 0.1423 0.2280 0.5206 3.3173 -0.3020 -0.3504 

P2022, 2027, 2032 0.1153 0.1985 0.8666 3.9012 -0.2271 -0.2618 

P2022, 2027, 2032, 2037 0.0967 0.1807 1.0793 4.4658 -0.1971 -0.2265 

Compared with the q-hedges, the full K-hedges provide an even greater reduction of both 
standard deviation and Expected Shortfall. This is remarkable since it is achieved with only 
four instruments as opposed to 14. We note again the lower costs of the ATM K-put hedges: 

 
  



 

Here is a summary of percentage reductions of the Expected Shortfall for each type of 
hedges in the three models: 

Cohorts 1 1, 2 1, 2, 3 1, 2, 3, 4 

Li–Lee 
Q-forwards 28.86% 44.64% 56.19% 63.15% 

Q-puts 25.67% 39.46% 49.31% 55.32% 

CBD (M5) 
Q-forwards 25.77% 40.20% 51.51% 58.87% 

Q-puts 22.69% 35.04% 44.51% 50.50% 

CBD (M7) 
Q-forwards 25.57% 40.25% 52.04% 59.17% 

Q-puts 22.61% 35.35% 45.35% 51.58% 
 

Year 2022 2022, 2027 2022, 2027, 
2032 

2022, 2027, 
2032, 2037 

Li–Lee 
K1-forwards 23.00% 48.27% 63.38% 62.75% 

K1-puts 20.10% 42.49% 56.39% 60.36% 

CBD (M5) 
K1-forwards 19.52% 43.12% 60.48% 65.46% 

K1-puts 16.71% 37.48% 53.20% 59.50% 

CBD (M7) 
K1-forwards 19.28% 43.33% 61.22% 66.96% 

K1-puts 16.47% 37.62% 53.39% 59.68% 

Each individual table shows some variability across models for each portfolio. Some of it is 
due to the Monte Carlo simulations of course and could be dealt with using the same 
random numbers for each model or using more simulations and variance-reduction 
techniques. But the general picture these numbers give in terms of hedging efficiency is 
fairly consistent.  

Understandably, the K-hedge with only one instrument offers a lower reduction than the 
five q-forwards but it is quite remarkable to see the reductions provided by the K-
instruments improving with the incremental addition of a single K-instrument, to the point 
where the reductions provided by the hedges with three and four K-instruments are all 
higher than the reductions of the corresponding 12 and 14 q-instruments respectively. 

  



 

6. Conclusion 
Our study shows that mortality and K-forwards and puts provide efficient means of greatly 
reducing longevity risk in a multi-cohort portfolio of annuities.  

It would be very useful for pension plans and insurance companies to have exchanges where 
they could take short positions on q-futures and K-futures as well as long positions on q-
puts and K-puts to hedge their longevity risk. On the other side of these transactions, we 
believe that capital market investors (besides mortality hedgers like insurance and re-
insurance companies) would be greatly interested in taking opposite positions in these 
instruments in order to earn a premium for a risk which is largely uncorrelated with their 
market risks. Among those products (and along with the survivor instruments treated in 
Giannini 2020), the K-futures and puts – without a need for a specific reference to age, and 
with key-durations five years apart, say – offer excellent hedges requiring only a few 
instruments to be traded in the market. This means more liquid instruments and less costly 
portfolio rebalancing. If we add to this the ease and transparency of computation of the 
indices, their intuitive interpretation in terms of movements of mortality rates, and the new 
data-invariant property which makes the indices easy to maintain, we get a very compelling 
case for the rapid development of a liquid K-futures/puts market. In the case of the puts, 
the hedger also has the opportunity of choosing the deductible on the portfolio insurance. 
This cost efficiency vs moneyness of the options is the main theme of Li et al. (2019) and it is 
something we want to investigate later, along with the efficiency of dynamic hedging. Zhou 
and Li (2019) study delta-hedging cross-population basis risk with q-forwards. Dynamic 
hedging requires a well-developed and liquid market. 
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