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The Impact of Longevity Annuity Provision on Canadian Retirement 
Income Planning 

Rui Zhou, Johnny S.-H. Li, Kenneth Zhou 

 
 

A longevity annuity is a deferred annuity where payments start very late in life; i.e., well after 
the normal retirement age. By transferring the risk of outliving retirement savings at high ages 
to annuity providers, a longevity annuity provides annuitants with enhanced later-life financial 
security. In this report, we examine the impact of longevity annuity provision on retirement 
income planning based on Canada’s tax rules and retirement system. A dynamic life cycle 
framework is developed to study welfare increases and consumption pattern changes resulting 
from the provision of longevity annuities to Canadian retirees. To determine the optimal 
choices in the life cycle model, we propose a modified general endogenous grid method 
(GEGM) which addresses the non-differentiability problem arising from realistic tax rules and a 
realistic retirement system. This life cycle framework and modified GEGM are further applied to 
explore how individuals in different social classes respond to the access to longevity annuities.  

1  Introduction 
With the rapid mortality improvement we have been experiencing in recent years, there is a 
high likelihood of retirees underestimating their life expectancy and outliving their retirement 
assets. Volatile investment return exacerbates the problem by the potential poor growth of 
retirement savings. A long-recognized solution to secure retirement income is an annuity. Since 
the seminal work of Yaari (1965), economists have agreed on the substantial social welfare 
benefits of immediate annuities. Economists have further concurred that retirees should 
convert most or all of their assets into annuities at retirement. However, rates of voluntary 
annuitization have remained extremely low, a phenomenon known as the “annuity puzzle.” 

Milevsky (2005) introduces the longevity annuity, also known as the advanced-life delayed 
annuity (ALDA), as a new way to provide lifetime retirement income. A longevity annuity is a 
deferred annuity where payments start very late in life; i.e., well after the normal retirement 
age. By transferring the risk of outliving retirement savings at high ages to annuity providers, a 
longevity annuity provides annuitants with enhanced later-life financial security. Since the 
payments start at very advanced ages, the cost of a longevity annuity is much lower than that 
of an immediate annuity, hence reducing the loss of liquidity due to annuitization. 

Longevity annuities were first made accessible to 401(k) plans in the US in 2014. More than 10 
A-rated (according to A.M. Best) or better insurers1 in the US currently provide the product. 
Although the sales of longevity annuities have recently taken off, their share in the annuity 

 
1 www.forbes.com/sites/mattcarey/2018/08/13/qlac-pricing-improves-as-more-insurers-offer-product-bond-yields-rise/#43dd501b36e0  

http://www.forbes.com/sites/mattcarey/2018/08/13/qlac-pricing-improves-as-more-insurers-offer-product-bond-yields-rise/#43dd501b36e0
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market is still small. The 2019 Canadian federal budget also introduces ALDAs and allows them 
to be purchased under the registered retirement saving plans (RRSPs), registered retirement 
income funds (RRIFs), deferred profit-sharing plans, pooled registered pension plans and 
defined contribution registered pension plans (RPPs). 

Existing research on longevity annuities is mainly conducted in the US context. Gong and Webb 
(2010) study the money worth of a longevity annuity and compare retirement wealth 
decumulation strategies with and without a longevity annuity. Their results show that a 
longevity annuity provides a substantial proportion of longevity risk protection offered by an 
immediate annuity at much lower cost. However, the assumptions used in this paper are 
restrictive, such as a fixed percentage of wealth converted to a longevity annuity, deterministic 
mortality projections, constant interest rate, and constant investment return. More recently, 
Pfau, Tomlinson, and Vernon (2016) analyze whether using a longevity annuity in combination 
with systematic withdrawal plans produces higher expected income with the same amount of 
risk, compared to using single-premium immediate annuities or guaranteed lifetime withdrawal 
benefit annuities. Horneff, Maurer, and Mitchell (2016) develop a realistic life cycle model for a 
US individual and measure welfare improvements due to including longevity annuities in the 
401(k) plan payout. The researchers conclude that the access to a longevity annuity boosts 
welfare by 5–20% and the optimal percentage of a plan asset converted to a longevity annuity 
is 8–15%. While these studies provide valuable information for Canadian retirees, Canada’s tax 
rules, retirement system, and health care system differ from those of the US These differences 
may significantly affect conclusions.  

In this report, we examine the impact of longevity annuity provision on retirement income 
planning based on realistic Canadian tax rules and Canadian-specific demographic assumptions. 
More specifically, we develop a life cycle model for retirement income planning that allows 
stochastic models for mortality experience and investment returns. The optimal consumption 
and saving decisions are determined by maximizing the lifetime utility of a representative 
Canadian male. 

Life cycle model is a standard economic approach to examine lifetime choices including 
consumption, saving, investment, and labour supply. Horneff et al. (2016) formulated a life 
cycle model to measure welfare improvements for US retirees due to including longevity 
annuities in the 401(k) plan payout. Our study, with its focus on Canadian retirees, differs from 
that of Horneff et al. (2016). Our life cycle model incorporates Canadian tax rules and applies 
stochastic mortality models calibrated to Canadian historical mortality rates. We adopt the 
widely used Lee-Carter model (Lee and Carter, 1992) for Canadian national mortality data and 
the augmented comment factor model (Li and Lee, 2005) for CPP pension group mortality. 

To solve the optimization problem, we propose a modified GEGM. The EGM, first proposed by 
Carroll (2006), requires significantly less computation time compared to the traditional value 
function iteration (VFI) approach by avoiding iterative numerical integrations. Druedahl and 
Jørgensen (2017) generalize EGM to address several challenges arising in complex life cycle 
models including insufficient first-order conditions (FOCs), no prior information on whether 
constraints are binding, and irregular endogenous grid. A key step of the GEGM is to divide the 
optimization problem into segments and evaluate the value function by segment. Druedahl and 
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Jørgensen (2017) assume that the value function is differentiable in each segment. However, 
the realistic tax rules and retirement income system assumed in our analysis introduce kinks in 
the wealth process and hence non-differentiable points. To allow for a non-differentiable value 
function, we propose a new segmentation approach based on the threshold values used for 
personal tax and retirement income. 

Using the proposed life cycle model and modified GEGM, we examine welfare increases and 
consumption pattern changes resulting from the provision of longevity annuities to Canadian 
retirees. We further study how individuals in different socio-economic classes respond to the 
access to longevity annuities. Socio-economic classes affect not only the income but also the 
mortality experience of an individual. In this analysis, we examine the relation between socio-
economic classes and mortality experience exhibited in the Canada Pension Plan (CPP) 
mortality data and incorporate this relation in the life cycle model. The CPP mortality data 
categorize pensioners into 11 groups by the CPP pension amount received, and provide 
historical mortality experience for each pension group. Since the CPP pension amount is 
determined by the income earned and the number of years worked during the working life, the 
pension groups can be viewed as an indicator of the pensioners’ socio-economic classes. 

The remainder of the report is organized as follows: Section 2 describes the Canadian 
retirement income system; Section 3 looks at the longevity annuity in depth; Section 4 fits the 
widely used Lee–Carter model to Canadian mortality data; Section 5 develops the life cycle 
model; Section 6 discussess the GEGM approach; Section 7 demonstrates the simulated 
consumption and saving patterns with and without longevity annuity access for a Canadian 
male; Section 8 examines the impact of socio-economic class on mortality experience and 
incorporates this impact into the assessment of utility gain from longevity annuity access; and 
Section 9 concludes the report. 

2  Canadian retirement income system 
2.1  The three pillars 
Canadian retirement income typically comes from three resources:   

• The CPP or Quebec Pension Plan (QPP).  
• Old Age Security (OAS). 
• Employer-sponsored pension plans and personal savings and investments.  

The three resources are often referred to as the three pillars of Canadian retirement income 
system. The three pillars differ in funding sources, tax treatments, and how and when payments 
are taken from them. These differences significantly affect how individuals save for their 
retirement and how they spend their savings during retirement. Therefore, we describe the 
three pillars in detail in the following subsections. In particular, we focus on a Canadian citizen 
who has lived and worked in Ontario, Canada, during his entire lifetime. 
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2.2  CPP/QPP 
Almost every person over the age of 18 who works in Canada outside of Quebec and earns 
more than a basic exemption amount must contribute to the CPP. The CPP operates throughout 
Canada, except in Quebec, where the QPP provides similar benefits. Since we perform analysis 
for a Canadian citizen living in Ontario in this paper, we only provide details about the CPP. 

The CPP contribution amount is determined by basic exemption amount, pensionable earnings, 
and contribution rate:   

• Basic exemption amount: The basic exemption amount is $3,500 in 2018. If the annual 
earnings are below $3,500, no CPP contribution is made.  

• Pensionable earnings: Pensionable earnings are equal to the annual earnings capped at 
a maximum amount which is set each January based on increases in the average wage in 
Canada over the past year. The maximum pensionable earnings in 2018 are $55,900.  

• Contribution rate: The contribution rate on the pensionable earnings is 9.9% in 2018, 
split equally between employer and employee. If self-employed, the self-employed 
person pays the full 9.9%.  

Denote the average wage in year 𝑡𝑡 by 𝐴𝐴𝑊𝑊𝑡𝑡 and the annual earnings of an employee in year 𝑡𝑡 
by 𝑌𝑌𝑡𝑡. Assume that basic exemption amount and contribution rate remain unchanged in the 
future years. The annual CPP contribution made by the employee or the employer in year 𝑡𝑡 
can be expressed as follows:  

 0.5 × 9.9% × max �min �𝑌𝑌𝑡𝑡, 55900  𝐴𝐴𝐴𝐴 𝑡𝑡−1
 𝐴𝐴𝐴𝐴 2017

� − 3500,0�. 

As a result, the maximum contribution for employer or employee in 2018 is $2,593.80 each. 

The standard age from which the CPP retirement pension can be taken is the month after the 
65th birthday. However, the CPP pension can be taken from as early as age 60 with a reduced 
pension amount or after age 65 with an increased pension amount. The CPP pension amount is 
determined by how many years of CPP contributions are made during employment and how 
much are the contributions. In general, the longer and the higher the CPP contributions, the 
greater the CPP pension will be. 

The CPP pension amount calculation permits dropping out for some periods in which individuals 
may have relatively low or no earnings. There are two common drop-outs: the general drop-out 
and the Child Rearing Provision. The general drop-out allows up to 17% of the base contributory 
period of the lowest earnings to be dropped from the calculation. This provision applies to all 
CPP contributors. The Child Rearing Provision permits dropping out for the periods with lower 
earnings due to caring for a dependent child under the age of seven. An example of a CPP 
pension amount calculation is shown in Appendix A. 

In practice, the CPP pension amount increases with the Consumer Price Index (CPI), but remains 
unchanged when the CPI decreases. In this paper, we assume no inflation, and hence the CPP 
pension amount remain unchanged. There are other benefits under the CPP program, such as 
disability benefit and survivor’s pension. We only consider the CPP retirement pension since 
our numerical analysis will be based on a healthy single individual. 
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2.3  OAS 
The OAS program, which includes the OAS pension, Guaranteed Income Supplement (GIS), 
Allowance, and Allowance for the Survivor, is funded by the general revenues of the 
Government of Canada. There is no direct contribution to the program from an individual. 

Both the OAS pension and GIS depend on the previous year’s income. The maximum monthly 
OAS pension amount regardless of marital status is $589.59 in 2018. If the annual net world 
income in the previous year exceeds the threshold amount ($75,910 for 2018), recovery tax will 
be deducted from the OAS pension amount at the rate of 15 cents for each dollar of income 
above the threshold until the OAS pension amount reaches 0. Both the maximum OAS pension 
amount and the threshold amount increase with CPI. In practice, the monthly OAS pension 
amount and the threshold amount are adjusted quarterly and annually respectively. For 
convenience, we assume that both are adjusted annually. The OAS pension amount received in 
year 𝑡𝑡 can be written as:  

 max �12 × 589.59  𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡−1
 𝐶𝐶𝐶𝐶𝐶𝐶 2017

− 0.15max �𝑌𝑌𝑡𝑡 − 75910  𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡−1
 𝐶𝐶𝐶𝐶𝐶𝐶 2017

, 0� , 0�. 

It is easy to verify that the maximum annual income to receive the OAS pension is $123,077 for 
2018. Note that the OAS pension amount is treated as taxable income. 

The GIS is a monthly non-taxable benefit to OAS pension recipients who have a low income and 
are living in Canada. The amount of the GIS received depends on their marital status and the 
previous year’s income. The maximum monthly GIS payment amount for a single pensioner is 
$880.61. The actual amount of GIS is determined using a set of complex rate tables2 and 
decreases almost linearly with income (excluding the OAS pension and GIS) received. The 
maximum annual income to receive the GIS pension is $17,880 for a single pensioner. We 
perform a linear regression of GIS pension amounts shown in the GIS rate table on their 
corresponding income levels. We find that the GIS pension received in year 𝑡𝑡 can be 
approximated as:  

 max �12 × 880.61  𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡−1
 𝐶𝐶𝐶𝐶𝐶𝐶 2017

− 0.5909𝑌𝑌𝑡𝑡, 0�. 

The Allowance may be received by an individual who is 60–64 years of age with a spouse or 
common-law partner receiving the OAS pension and eligible for the GIS. The Allowance for the 
Survivor amount may be received by a widowed individual who is 60–64 years of age. We do 
not provide details about the allowance and Allowance for the Survivor amount since our 
analysis focuses on a single individual. 

2.4  Employer-sponsored pension plans and personal savings and investments 
Employer-sponsored pension plans, such as a group RRSP or an RPP, are contributed to 
regularly by both employee and employer. There are two main types of employer-sponsored 
pension plans: defined contribution plans and DB plans. Our analysis considers only defined 
contribution plans. An individual can also establish his individual RRSP account with his bank. 

 
2 www.canada.ca/content/dam/canada/employment-social-development/migration/documents/assets/portfolio/docs/en/cpp/oas/sv-oas-jul-
sept-2019.pdf  

http://www.canada.ca/content/dam/canada/employment-social-development/migration/documents/assets/portfolio/docs/en/cpp/oas/sv-oas-jul-sept-2019.pdf
http://www.canada.ca/content/dam/canada/employment-social-development/migration/documents/assets/portfolio/docs/en/cpp/oas/sv-oas-jul-sept-2019.pdf
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The total annual contribution to an RPP and RRSP is limited to 18% of earned income in the 
previous year up to a maximum amount, which is set at $26,230 in 2018. In this report, we use 
RPP/RRSP to represent both employer-sponsored pension plans and individual RRSPs for 
simplicity. Since contributions made to RPPs/RRSPs are tax-deductible, RPPs/RRSPs provide 
significant tax incentives for high-income earners. 

December 31 of the year that an individual turns 71 years old is the last day that contributions 
can be contributed to an RRSP. In the year an individual turns 71 years old, the RPP/RRSP has to 
be:   

• withdrawn;  
• transferred to an RRIF; or  
• used to purchase an annuity.  

Withdrawing all the RPP/RRSP at once is often not the best strategy because withdrawals are 
treated as income, and personal income tax applies. There is no withholding tax when money is 
transferred directly to an RRIF or used to purchase an annuity. However, income tax needs to 
be paid when the payment of the RRIF or annuity starts. A minimum RRIF withdrawal, the 
amount of which depends on the age of retiree, must be made every year once converted. 
Earnings in an RRIF are tax-free. 

Besides RRSPs, another registered saving plan with tax incentives is the Tax-Free Savings 
Account (TFSA) program which began in 2009. A Canadian who is 18 and older can invest 
money in a TFSA tax-free throughout their lifetime. While contributions to a TFSA are not tax-
deductible, income earned in the account is generally tax-free, even when it is withdrawn. TFSA 
contributions are limited to $5,500 for the year 2018. The TFSA annual room limit is indexed to 
inflation and rounded to the nearest $500. Unused TFSA contribution room can be accumulated 
to future years. The TFSA contribution room is determined by the annual TFSA dollar limit plus 
unused TFSA contribution room from the previous year and any withdrawals made from the 
TFSA in the previous year. 

3  Longevity annuity 
The longevity annuity, first proposed by Milevsky (2005), as mentioned above, is a deep-
deferred annuity that begins to make annuity payments late in life. It has the benefit of low 
costs and income security for high ages. Assume that an individual retires when he turns 65 at 
the beginning of year 𝑡𝑡 and converts a portion of his retirement savings into a longevity 
annuity, which begins payment from the age of 𝑥𝑥a. Denote the central death rate of an 𝑥𝑥-year-
old in year 𝑡𝑡 by 𝑚𝑚𝑥𝑥,𝑡𝑡. Assuming constant force of mortality between integer ages, the death 
probability of this individual in year 𝑡𝑡 is 𝑞𝑞𝑥𝑥,𝑡𝑡 = 1 − 𝑒𝑒−𝑚𝑚𝑥𝑥,𝑡𝑡. The probability of this individual 
aged 𝑥𝑥 at the beginning of year 𝑡𝑡 surviving 𝑇𝑇 years can be written as:  

  𝑇𝑇𝑆𝑆𝑥𝑥,𝑡𝑡 = ∏𝑇𝑇−1
𝑗𝑗=0 (1 − 𝑞𝑞𝑥𝑥+𝑗𝑗,𝑡𝑡+𝑗𝑗). 

The present value of a longevity annuity issued to an 𝑥𝑥-year-old at the beginning of year 𝑡𝑡 
with a $1 payment in advance starting from age 𝑥𝑥𝑎𝑎 can be written as:  

  𝑥𝑥𝑎𝑎−𝑥𝑥|�̈�𝑎𝑥𝑥,𝑡𝑡 = ∑𝜔𝜔−𝑥𝑥−1
𝑖𝑖=𝑥𝑥𝑎𝑎−𝑥𝑥 (1 + 𝑟𝑟)−𝑖𝑖𝑖𝑖𝑆𝑆𝑥𝑥,𝑡𝑡. 
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where 𝑟𝑟 is the rate of return earned by the annuity provider and 𝜔𝜔 is the limiting age. We 
assume that no one lives beyond 100 years old and thus 𝜔𝜔 = 100. 

A longevity annuity provides a significant tax benefit. An ALDA will make regular payments no 
later than the end of the year the annuitant reaches age 85 under the 2019 Canadian federal 
budget plan, while a registered annuity starts payment no later than the end of the year the 
annuitant turns age 71 under existing rules. The late payments provide tax deferral since 
annuity payments are taxed at the personal income marginal tax rate. In addition, the 
calculation of minimum withdrawal from registered accounts excludes the asset value 
converted to an ALDA. Therefore, an ALDA purchase reduces the minimum withdrawal required 
from registered accounts, thereby providing further tax deferral. The ALDA purchase will be 
limited to 25% of the registered account value at the end of the previous year and also subject 
to a lifetime $150,000 limit which will be indexed to inflation. Similar tax treatment and 
purchase limits apply to a longevity annuity allowed in the 401(k) plan in the US. 

4  Mortality modelling 
4.1  Lee–Carter model 
Mortality rates determine the life expectancy of an individual and the cost of a longevity 
annuity. As a result, mortality rates play an important role in the choices that an individual 
makes for retirement planning. To depict the mortality dynamics, we consider the widely used 
Lee–Carter model. The Lee–Carter model in its original form (Lee and Carter, 1992) can be 
expressed mathematically as  

 ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝛽𝛽𝑥𝑥
(0) + 𝛽𝛽𝑥𝑥

(1)𝜅𝜅𝑡𝑡, (1) 

where 𝑚𝑚𝑥𝑥,𝑡𝑡 denotes the central death rate at age 𝑥𝑥 and in year 𝑡𝑡, 𝛽𝛽𝑥𝑥
(0) is the average level 

of mortality (in log scale) over time, 𝛽𝛽𝑥𝑥
(1) is the age-specific sensitivity to the time-varying 

factor, and 𝜅𝜅𝑡𝑡, which governs the dynamics of central death rates at all ages. The parameters 
𝛽𝛽𝑥𝑥

(0), 𝛽𝛽𝑥𝑥
(1), and 𝜅𝜅𝑡𝑡 can be estimated by maximum likelihood estimation (MLE) assuming that 

the number of deaths for age 𝑥𝑥 in year 𝑡𝑡, 𝐷𝐷𝑥𝑥,𝑡𝑡, follows Poisson distribution with mean equal 
to 𝐸𝐸𝑥𝑥,𝑡𝑡𝑚𝑚𝑥𝑥,𝑡𝑡 where 𝐸𝐸𝑥𝑥,𝑡𝑡 is the number of exposure-to-risk for age 𝑥𝑥 in year 𝑡𝑡. The 
loglikelihood function can be written as  

 ∑𝑡𝑡1
𝑡𝑡=𝑡𝑡0 ∑

𝑥𝑥1
𝑥𝑥=𝑥𝑥0 𝐷𝐷𝑥𝑥,𝑡𝑡ln[𝐸𝐸𝑥𝑥,𝑡𝑡𝑚𝑚𝑥𝑥,𝑡𝑡] − 𝐸𝐸𝑥𝑥,𝑡𝑡𝑚𝑚𝑥𝑥,𝑡𝑡 − ln[𝐷𝐷𝑥𝑥,𝑡𝑡!], 

where [𝑡𝑡0, 𝑡𝑡1] is the sample period and [𝑥𝑥0, 𝑥𝑥1] is the sample age range and 𝐷𝐷𝑥𝑥,𝑡𝑡! is the 
factorial function of 𝐷𝐷𝑥𝑥,𝑡𝑡. 
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4.2  Mortality data 
We use two sets of mortality data in our analysis. The first set is the Canadian male mortality 
data obtained from the Human Mortality Database3 (HMD) for the sample age range of 20–100 
and the sample period of 1967–2016. The second set is the CPP male mortality data by pension 
groups for the age range of 65–89 and the sample period of 1991–2015. In this section, we use 
the HMD data to illustrate the estimation of a Lee–Carter model. We will provide more details 
about the CPP data in Section 8.1. 

Figure 1: Lee–Carter parameter estimates for Canadian males using HMD data

 
The estimated parameters using the HMD data and corresponding far charts that represent the 
90% confidence intervals of the parameter estimates are shown in Figure 1. The confidence 
intervals of the parameter estimates are obtained using the bootstrapping method proposed by  
Brouhns et al. (2005) with 1000 bootstrapped samples. Each sample of death count at age 𝑥𝑥 in 
year 𝑡𝑡 is generated as a random number from Poisson distribution with mean equal to the 
actual number of deaths at age 𝑥𝑥 in year 𝑡𝑡. The confidence interval of the estimated 𝛽𝛽𝑥𝑥

(0) is 
very narrow and close to unobservable while the confidence interval of the estimated 𝛽𝛽𝑥𝑥

(1) is 
much wider. The estimated 𝜅𝜅𝑡𝑡 shows a downward trend, indicating that mortality rates 
decrease over time.  

We further model the series of estimated 𝜅𝜅𝑡𝑡 by a time-series process. Since the sample 
autocorrelation function (ACF) and partial autocorrelation function (PACF) of 𝜅𝜅𝑡𝑡+1 − 𝜅𝜅𝑡𝑡 are 
both insignificant for lags up to 10 as shown in Figure 2, we select random walk with drift to 
model 𝑘𝑘𝑡𝑡. This simple model for 𝑘𝑘𝑡𝑡 makes the optimization of the life cycle model more 

 
3 https://www.mortality.org/ 
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manageable. The random walk with drift model for 𝑘𝑘𝑡𝑡 can be written as:  

 𝜅𝜅𝑡𝑡+1 = 𝜅𝜅𝑡𝑡 + 𝜇𝜇 + 𝜎𝜎𝑧𝑧𝑡𝑡+1, 

where 𝜇𝜇 and 𝜎𝜎 are constants, and {𝑧𝑧𝑡𝑡} is a sequence of i.i.d. standard normal random 
variables. 

The estimated 𝜇𝜇 and 𝜎𝜎 using the original sample are −1.2668 and 0.9027 respectively. The 
90% confidence intervals of the estimated 𝜇𝜇 and 𝜎𝜎 using the bootstrapping method are 
[−1.2790,−1.2544] and [0.8311,0.9756] respectively. 

Figure 2: Sample ACF and PACF plots for 𝜿𝜿𝒕𝒕+𝟏𝟏 − 𝜿𝜿𝒕𝒕 

 

Since the estimated age components 𝛽𝛽𝑥𝑥
(0) and 𝛽𝛽𝑥𝑥

(1) do not change over time, the uncertainty 
of mortality forecast solely comes from the uncertainty in the forecast of 𝜅𝜅𝑡𝑡. To simulate 
mortality paths for future time period 𝑡𝑡 ∈ [𝑡𝑡1 + 1, 𝑡𝑡1 + 𝑛𝑛], we first simulate values of 𝑧𝑧𝑡𝑡 for 
𝑡𝑡 ∈ [𝑡𝑡1 + 1, 𝑡𝑡1 + 𝑛𝑛] and then calculate the values of corresponding 𝜅𝜅𝑡𝑡 and 𝑚𝑚𝑥𝑥,𝑡𝑡. 

5  A life cycle model 
5.1  The setup 
We consider a Canadian male who turns 25 at the beginning of 2018 and lives in Ontario 
throughout his lifetime. To simplify notations, we represent the calendar year 2018 with year 1. 
This individual earns an annual salary of 𝑌𝑌𝑡𝑡 in year 𝑡𝑡 which is paid upfront at the beginning of 
the year. Assuming that we know exactly how much this individual earns each year, there is no 
uncertainty in 𝑌𝑌𝑡𝑡. Both he and his employer contribute 4.55% (half of the 9.9% contribution 
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rate in 2018) of his pensionable earnings (calculated based on his annual salary) to the CPP. His  
employer contributes another 5% of his annual salary into the RPP, which is a defined 
contribution plan. The individual does not contribute to the RPP, but he contributes a certain 
amount of his annual salary to his RRSP subject to the total RPP/RRSP contribution limit of 
0.18𝑌𝑌𝑡𝑡. This amount will be determined in the following subsections via the optimization of the 
life cycle model. For simplicity, we do not allow RRSP contribution room to be carried forward4. 

Without loss of generality, we assume the average wage and CPI remain unchanged in future 
years. Therefore, the dollar values in this report can be viewed as real dollar values or inflation-
adjusted values. The CPP contribution made by either the employee or employer can be 
simplified as follows:  

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = 0.5 × 9.9% × max(min(𝑌𝑌𝑡𝑡, 55900) − 3500,0). 

As an employee, this individual also pays employment insurance (EI) premiums. EI premiums 
are determined by EI rates and insurable earnings up to a maximum amount. The EI premium 
rate paid by the employee is $1.66 per $100 of insurable earnings, and the maximum insurable 
earnings are $51,700 in 2018. The employer pays 1.4 times the amount of the employee’s 
premiums. The EI premiums paid by the employee can be expressed as:  

 𝐸𝐸𝐼𝐼𝑡𝑡 = 1.66×max(𝑌𝑌𝑡𝑡,51700)
100

. 

This individual pays tax on his earnings. The combined federal and Ontario tax brackets and tax 
rates including surtaxes for Ontario residents are shown in Table 1. We denote the total tax 
payable by 𝑇𝑇𝑎𝑎𝑥𝑥𝑡𝑡. When calculating personal income tax, we exclude from his annual earnings 
the CPP contribution, employee RPP and individual RRSP contribution, and EI premiums, which 
are all tax-deductible. 

In the first 30 years of his working life, he is assumed to spend 30% of his annual earnings on 
housing, including rent/mortgage payments, heating and cooling, and property taxes. Given 
that the Canada Mortgage and Housing Corporation normally restricts the gross debt service 
(GDS) ratio to 35% and the total debt service (TDS) ratio to 42%5, 30% of annual earnings on 
housing is a reasonable estimate. After the mortgage is paid off in 30 years, we assume that his 
housing expense is reduced to 10% of annual earnings. We use 𝐻𝐻𝑡𝑡 to denote the housing 
expense in year 𝑡𝑡:  

 𝐻𝐻𝑡𝑡 = �30% × 𝑌𝑌𝑡𝑡,     if 1 ≤ 𝑡𝑡 ≤ 30
10% × 𝑌𝑌𝑡𝑡,     if 𝑡𝑡 > 30 . 

The remaining earnings after deducting payments for EI, the CPP, RPP/RRSPs, tax, and housing 
expenses can be either consumed or saved in a TFSA.  

  

 
4 If we allow RRSP contribution room to accumulate, an additional state variable is needed in the life cycle model and complicates the 
computation. 
5 The GDS ratio is the percentage of the gross annual income that goes to “mortgage expenses” – the principal, interest, property taxes, and 
heating costs, plus fees for condominium maintenance. The TDS ratio evaluates the gross annual income needed for all debt payments: 
housing, credit cards, personal loans, and car loans. 
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Table 1: Combined federal and Ontario tax brackets and tax rates including surtaxes 

2018 taxable income Other income Capital gains Canadian dividends 

     Eligible Non-eligible 

First $42,960 20.05% 10.03% −6.86% 7.81% 

Over $42,960 up to $46,605 24.15% 12.08% −1.20% 12.57% 

Over $46,605 up to $75,657 29.65% 14.83% 6.39% 18.95% 

Over $75,657 up to $85,923 31.48% 15.74% 8.92% 21.07% 

Over $85,923 up to $89,131 33.89% 16.95% 12.24% 23.87% 

Over $89,131 up to $93,208 37.91% 8.95% 17.79% 28.53% 

Over $93,208 up to $144,489 43.41% 21.70% 25.38% 34.91% 

Over $144,489 up to $150,000 46.41% 23.20% 29.52% 38.39% 

Over $150,000 up to $205,842 7.97% 23.98% 31.67% 40.20% 

Over $205,842 up to $220,000 51.97% 25.98% 37.19% 44.84% 

Over $220,000 53.53% 26.76% 39.34% 46.65% 

The individual retires when he turns 65 and converts a portion of his RPP/RRSP to a longevity 
annuity which makes regular payments from age 80. To avoid the minimum RRIF withdrawal 
requirement and maximize the withdrawal flexibility as much as possible, the individual only 
converts the remaining RPP/RRSP to an RRIF when he turns 71 years old. Once the RPP/RRSP is 
converted to a RRIF, a minimum RRIF withdrawal requirement applies to the value of his RRIF 
excluding the portion converted to a longevity annuity. Besides withdrawal from the 
RPP/RRSP/RRIF, the individual also receives a CPP pension, OAS pension, and GIS starting from 
age 65. Note that both the CPP pension and OAS pension are taxable, but the GIS is not. We 
denote the CPP pension, OAS pension, and GIS amount in year 𝑡𝑡 by 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡, 𝑂𝑂𝐴𝐴𝑆𝑆𝑡𝑡, and 𝐺𝐺𝐼𝐼𝑆𝑆𝑡𝑡 
respectively. 

5.2  Resources and decisions 
We divide the individual’s financial resources at the beginning of year 𝑡𝑡 into liquid resources 
𝑚𝑚𝑡𝑡 and illiquid resources 𝑛𝑛𝑡𝑡. Let us denote 𝑦𝑦𝑡𝑡 as the net income of year 𝑡𝑡. For an individual 
in his work life, we have 

𝑦𝑦𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝐸𝐸𝐼𝐼𝑡𝑡 − 𝑇𝑇𝑎𝑎𝑥𝑥𝑡𝑡 − 𝐻𝐻𝑡𝑡, for 𝑡𝑡 ≤ 40. 

Note that annual income 𝑌𝑌𝑡𝑡 for year 𝑡𝑡 is earned at the beginning of the year and the 
deduction of CPP contribution, EI premium, income tax, and housing expenses occurs at the 
same time as income payment. The liquid resources 𝑚𝑚𝑡𝑡 at the beginning of year 𝑡𝑡 during the 
working life include the TFSA balance from the previous year and the net income 𝑦𝑦𝑡𝑡 earned at 
the beginning of this year. The illiquid resources 𝑛𝑛𝑡𝑡 refer to the RPP/RRSP balance at the 
beginning of year 𝑡𝑡, which includes the employer’s RPP contributions and the individual’s RRSP 
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contributions from previous years. 

Two decisions are made at the beginning of year 𝑡𝑡 on how to spend the net income 𝑦𝑦𝑡𝑡: 
consumption 𝑐𝑐𝑡𝑡 and RRSP contribution 𝑑𝑑𝑡𝑡. The remaining amount will be invested into a TFSA 
as liquid resources. The RRSP contribution is subject to a contribution limit. Since the employer 
contributes 5% of pre-tax earnings to an RPP and unused RRSP contribution room is not carried 
forward, the maximum contribution to an RRSP in year 𝑡𝑡 is (0.18 − 0.05)𝑌𝑌𝑡𝑡. We also impose 
the condition that no RRSP can be withdrawn before retirement. Therefore, the post-decision 
RPP/RRSP balance at time 𝑡𝑡, 𝑏𝑏𝑡𝑡 can be written as  

 𝑏𝑏𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝑑𝑑𝑡𝑡, 

where 0 ≤ 𝑑𝑑𝑡𝑡 ≤ 0.13𝑌𝑌𝑡𝑡. The post-decision liquid resources for year 𝑡𝑡, 𝑎𝑎𝑡𝑡, can be expressed as  

 𝑎𝑎𝑡𝑡 = 𝑚𝑚𝑡𝑡 − 𝑐𝑐𝑡𝑡 − 𝑑𝑑𝑡𝑡 + 𝑔𝑔(𝑑𝑑𝑡𝑡), 

where 𝑔𝑔(𝑑𝑑𝑡𝑡) is the tax refund arriving immediately after contributing 𝑑𝑑𝑡𝑡 to the RRSP and 
𝑔𝑔(𝑑𝑑𝑡𝑡) < 𝑑𝑑𝑡𝑡. The post-decision liquid resources 𝑎𝑎𝑡𝑡−1 are assumed to be invested into a TFSA 
and earn a tax-free investment return. For simplicity, we assume that there is no annual 
contribution limit on the TFSA. 

For both the RPP/RRSP and TFSA, the individual follows a simple investment strategy: (100 −
 age )% in stocks and  age % in fixed-income securities or cash, and earns the same 
investment return. In practice, pension assets are invested long-term and thus generally earn a 
higher return than liquid assets such as a TFSA. Taking the investment return of a TFSA into 
account, the pre-decision liquid resources at the beginning of year 𝑡𝑡 + 1 can be written as  

 𝑚𝑚𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑦𝑦𝑡𝑡+1, 

where 𝑅𝑅𝑡𝑡 is the rate of investment return for both liquid and illiquid assets in year 𝑡𝑡. The pre-
decision RRSP balance at the beginning of year 𝑡𝑡 + 1 is  

 𝑛𝑛𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡 + 0.05𝑌𝑌𝑡𝑡+1, 

where 0.05𝑌𝑌𝑡𝑡+1 is the 5% employer contribution on the pre-tax earnings 𝑌𝑌𝑡𝑡+1. 

When the individual turns 65 at time 40, he retires and determines the portion of his RPP/RRSP 
assets that should be used to purchase longevity annuity with regular payments starting at age 
80. We assume that the longevity annuity is fairly priced and thus its price is equal to the 
expected present value of the future annuity benefits. Let the annual payment of the purchased 
longevity annuity be denoted by 𝐿𝐿. The price of the longevity annuity purchase is equal to 
 15|�̈�𝑎65,41 ⋅ 𝐿𝐿, where  15|�̈�𝑎65,41 is the present value of a 15-year deferred annuity of $1 paid in 
advance issued to a 65-year-old male at the beginning of year 41. The annuity payment starts at 
the beginning of year 56 if the annuitant is still alive at the payment date. 

At the beginning of year 𝑡𝑡 during retirement, the individual’s income includes a CPP pension, 
an OAS pension, a GIS, and a longevity annuity payment if applicable. Deducting the OAS 
recovery tax, personal income tax, and housing expenses from the income, we obtain the 
individual’s net income 𝑦𝑦𝑡𝑡 and  

 𝑦𝑦𝑡𝑡 = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 + 𝑂𝑂𝐴𝐴𝑆𝑆𝑡𝑡 + 𝐺𝐺𝐼𝐼𝑆𝑆𝑡𝑡 + 𝐿𝐿 ⋅ 1{𝑡𝑡≥56} − 𝑇𝑇𝑎𝑎𝑥𝑥𝑡𝑡 − 𝐻𝐻𝑡𝑡,  for 𝑡𝑡 ≥ 41. 
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The amount of OAS pension and GIS included in the net income is determined based on the 
total income from the CPP pension and longevity annuity. The impact of RRSP/RRIF withdrawal 
on the OAS pension and GIS amount will be considered separately. As previously defined, the 
liquid assets 𝑚𝑚𝑡𝑡 include the TFSA balance and the net income and 𝑛𝑛𝑡𝑡 represents the balance 
of the RPP/RRSP/RRIF. After making decisions on consumption 𝑐𝑐𝑡𝑡 and RPP/RRSP/RRIF 
withdrawal 𝑑𝑑𝑡𝑡, the post-decision assets at the beginning of year 𝑡𝑡 are expressed as  

 𝑎𝑎𝑡𝑡 = 𝑚𝑚𝑡𝑡 − 𝑐𝑐𝑡𝑡 − 𝑑𝑑𝑡𝑡 + 𝑔𝑔(𝑑𝑑𝑡𝑡), 

 𝑏𝑏𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝑑𝑑𝑡𝑡−15|�̈�𝑎65,41 ⋅ 𝐿𝐿 × 1{𝑡𝑡=41}, 

where 𝑑𝑑𝑡𝑡 is negative and subject to the minimum RRIF withdrawal requirement after the 
individual turns 71, and 𝑔𝑔(𝑑𝑑𝑡𝑡) is also negative and represents the additional income tax that 
needs to be paid for the RPP/RRSP/RRIF withdrawal and the reduction of the OAS pension and 
GIS amount due to the RPP/RRSP/RRIF withdrawal. 

The resources prior to making decisions at the beginning of year 𝑡𝑡 + 1 are then given by  

 𝑚𝑚𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑦𝑦𝑡𝑡+1, 

 𝑛𝑛𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡. 

5.3  Maximizing expected lifetime utility 
The expected lifetime utility of a 25-year-old individual at time 0 is defined as follows:  

 ∑𝑡𝑡=1,...75 𝛽𝛽𝑡𝑡−1𝔼𝔼[𝑢𝑢(𝑐𝑐𝑡𝑡)], 

where 𝛽𝛽 is the time-preference discount factor and 𝑢𝑢(. ) is the utility function. We assume 
that the utility function has constant relative risk aversion, and hence  

 𝑢𝑢(𝑐𝑐) = 𝑐𝑐1−𝛾𝛾

1−𝛾𝛾
, 

where 𝛾𝛾 is the relative risk-aversion parameter. 

Our objective is to find the decisions (i.e., the values of 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡) that maximize the expected 
lifetime utility. To formulate the optimal decision rules, we apply Bellman’s Principle of 
Optimality (Bellman, 1957) which states: 

Principle of Optimality: An optimal policy has the property that whatever the initial state 
and initial decision are, the remaining decisions must constitute an optimal policy with 
regard to the state resulting from the first decision.  

At the beginning of year 𝑡𝑡, for 1 ≤ 𝑡𝑡 ≤ 40, the resources 𝑚𝑚𝑡𝑡 and 𝑛𝑛𝑡𝑡 and the most recent 
mortality experience 𝜅𝜅𝑡𝑡−1 are known and set as state variables, based on which choices are 
made. Applying the Principle of Optimality, we obtain the Bellman equation expressed as 
follows:  

 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) = max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡

𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝔼𝔼�𝑝𝑝25+𝑡𝑡−1,𝑡𝑡𝑉𝑉𝑡𝑡+1(𝑚𝑚𝑡𝑡+1,𝑛𝑛𝑡𝑡+1, 𝜅𝜅𝑡𝑡)|𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1�, 

s.t.  

 𝑎𝑎𝑡𝑡 = 𝑚𝑚𝑡𝑡 − 𝑐𝑐𝑡𝑡 − 𝑑𝑑𝑡𝑡 + 𝑔𝑔(𝑑𝑑𝑡𝑡), 
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 𝑏𝑏𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝑑𝑑𝑡𝑡, 

 𝑚𝑚𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑦𝑦𝑡𝑡+1, 

 𝑛𝑛𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡 + 0.05𝑌𝑌𝑡𝑡+1, 

 𝑦𝑦𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝐸𝐸𝐼𝐼𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝑇𝑇𝑎𝑎𝑥𝑥𝑡𝑡 − 𝐻𝐻𝑡𝑡, 

 𝜅𝜅𝑡𝑡 = 𝜅𝜅𝑡𝑡−1 + 𝜇𝜇 + 𝜎𝜎𝑧𝑧𝑡𝑡, 

 𝑐𝑐𝑡𝑡 > 0, 

 0 ≤ 𝑑𝑑𝑡𝑡 ≤ 𝑢𝑢𝑑𝑑𝑡𝑡 , 

 𝑐𝑐𝑡𝑡 + 𝑑𝑑𝑡𝑡 − 𝑔𝑔(𝑑𝑑𝑡𝑡) ≤ 𝑚𝑚𝑡𝑡, 

 

where 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1) is the value function representing the maximum obtainable value given 
the current state; 𝑝𝑝25+𝑡𝑡−1,𝑡𝑡 = 1 − 𝑞𝑞25+𝑡𝑡−1,𝑡𝑡; and 𝑢𝑢𝑑𝑑𝑡𝑡 = 0.13𝑌𝑌𝑡𝑡 is the maximum employee 
pension contribution. The constraint 𝑐𝑐𝑡𝑡 + 𝑑𝑑𝑡𝑡 − 𝑔𝑔(𝑑𝑑𝑡𝑡) ≤ 𝑚𝑚𝑡𝑡 implies that 𝑎𝑎𝑡𝑡 ≥ 0 and one 
cannot borrow to consume. The value function 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) comprises the utility of the 
current period consumption 𝑢𝑢(𝑐𝑐𝑡𝑡) and the discounted continuation value 
𝛽𝛽𝔼𝔼�𝑝𝑝25+𝑡𝑡−1,𝑡𝑡𝑉𝑉𝑡𝑡+1(𝑚𝑚𝑡𝑡+1,𝑛𝑛𝑡𝑡+1, 𝜅𝜅𝑡𝑡)|𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1�. The Bellman equation defines a recursive 
relation for the value function. Solving this equation requires us to start from the terminal year 
and work backward till the current year. Therefore, we should first formulate the Bellman 
equation for 41 ≤ 𝑡𝑡 ≤ 75 and then revisit the equation-solving. 

At the retirement age 65 (beginning of year 41), we assume that the individual first determines 
the proportion of the RPP/RRSP to be converted to a longevity annuity and hence the annual 
longevity annuity payment 𝐿𝐿. Since future decisions of consumption and pension withdrawal 
depend on the payment expected from the longevity annuity purchase, 𝐿𝐿 is set as a state 
variable for year 42 and onward. During retirement years, the retiree decides the consumption 
𝑐𝑐𝑡𝑡 and pension withdrawal 𝑑𝑑𝑡𝑡 at the beginning of each period. The withdrawal can be from an 
RPP/RRSP prior to age 71 and RRIF after age 71. The Bellman equation for year 41 ≤ 𝑡𝑡 ≤ 75 
can be written as:  

 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1, 𝐿𝐿) 

 =

�
max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡,𝐿𝐿

𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝔼𝔼�𝑝𝑝25+𝑡𝑡−1,𝑡𝑡 𝑉𝑉𝑡𝑡+1(𝑚𝑚𝑡𝑡+1,𝑛𝑛𝑡𝑡+1,𝜅𝜅𝑡𝑡 , 𝐿𝐿)|𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1�, 𝑡𝑡 = 41,

max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡

𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝔼𝔼�𝑝𝑝25+𝑡𝑡−1,𝑡𝑡 𝑉𝑉𝑡𝑡+1(𝑚𝑚𝑡𝑡+1,𝑛𝑛𝑡𝑡+1,𝜅𝜅𝑡𝑡 , 𝐿𝐿)|𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1,𝐿𝐿�, 42 ≤ 𝑡𝑡 ≤ 74,
 

 s.t.  

 𝑎𝑎𝑡𝑡 = 𝑚𝑚𝑡𝑡 − 𝑐𝑐𝑡𝑡 − 𝑑𝑑𝑡𝑡 + 𝑔𝑔(𝑑𝑑𝑡𝑡), 

 𝑏𝑏𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝑑𝑑𝑡𝑡−15|�̈�𝑎65,41 ⋅ 𝐿𝐿 ⋅ 1{𝑡𝑡=41}, 

 𝑚𝑚𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑦𝑦𝑡𝑡+1, 

 𝑛𝑛𝑡𝑡+1 = 𝑒𝑒𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡, 
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 𝑦𝑦𝑡𝑡 = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 + 𝑂𝑂𝐴𝐴𝑆𝑆𝑡𝑡 + 𝐺𝐺𝐼𝐼𝑆𝑆𝑡𝑡 + 𝐿𝐿 ⋅ 1{𝑡𝑡≥56} − 𝑇𝑇𝑎𝑎𝑥𝑥𝑡𝑡 − 𝐻𝐻𝑡𝑡, 

 𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑡𝑡−1 + 𝜇𝜇 + 𝜎𝜎𝑧𝑧𝑡𝑡 , 

 𝑐𝑐𝑡𝑡 ≥ 0, 

 𝑙𝑙𝑑𝑑𝑡𝑡 ≤ |𝑑𝑑𝑡𝑡| ≤ 𝑛𝑛𝑡𝑡 , 

 0 ≤ 𝑐𝑐𝑡𝑡 + 𝑑𝑑𝑡𝑡 − 𝑔𝑔(𝑑𝑑𝑡𝑡) ≤ 𝑚𝑚𝑡𝑡 

 0 ≤15| �̈�𝑎65,41 ⋅ 𝐿𝐿 ≤ 0.25 𝑛𝑛41, 

where 𝑙𝑙𝑑𝑑𝑡𝑡 is the minimum withdrawal required from an RRIF and 0 ≤15| �̈�𝑎65,41 ⋅ 𝐿𝐿 ≤ 0.25 𝑛𝑛41 
is the 25% limit on a longevity annuity purchase. 

Finally, we consider year 75, at the beginning of which the individual turns 99. Since he will die 
for certain before the limiting age 100 and any wealth remaining after his death does not yield 
any utility, he should withdraw all the assets in the RRIF and consume all the wealth he has. 
Therefore, the optimal choices for 𝑡𝑡 = 75 are  

 𝑐𝑐𝑡𝑡∗ = 𝑚𝑚𝑡𝑡 + 𝑛𝑛𝑡𝑡 − 𝑔𝑔(𝑛𝑛𝑡𝑡), 

 𝑑𝑑𝑡𝑡∗ = −𝑛𝑛𝑡𝑡. 

The post-decision assets are 𝑎𝑎75 = 0 and 𝑏𝑏75 = 0. Since there is no continuation value, the 
value function for 𝑡𝑡 = 75 can be written as  

 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1, 𝐿𝐿) = 𝑢𝑢(𝑐𝑐𝑡𝑡∗) = 𝑢𝑢(𝑚𝑚𝑡𝑡 + 𝑛𝑛𝑡𝑡 − 𝑔𝑔(𝑛𝑛𝑡𝑡)). 

To solve the Bellman equation, we start from the final year of the individual’s life and iterate 
backward to the current year. The optimal choices for year 75 have simple analytic form. 
However, such analytic optimal solutions do not exist for other years due to the complexity of 
the problem. Traditionally, the optimal choices are determined numerically using VFI (see 
Horneff et al., 2016), which constructs an exogenous grid for pre-decision-state variables and 
obtains the optimal choices for each point on the exogenous grid for years 74, 73, ..., 1 
sequentially. Iterative guesses of the optimal choices are made for each point on the grid. For 
each guess, we evaluate the value function 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1, 𝐿𝐿) which involves calculating 
expectation with numerical integration and interpolation of next year’s value function. The 
guesses are performed iteratively using brute force, Newton’s method, or other methods. The 
iteration stops when the change of value function is smaller than a pre-specified tolerance 
value. Due to the iterative evaluations of the value function, VFI is very time-consuming. 

6  A modified general endogenous grid method 
6.1  Solving the optimization problem with the endogenous grid method 
Carroll (2006) proposes the EGM, which avoids the iterative search in VFI and hence requires 
significantly less computation time. The fundamental idea of the EGM is to specify an 
exogenous grid over the post-decision state instead of over the pre-decision states. The value 
function can be rewritten as follows:  
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 𝑉𝑉�𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) = max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡

𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) (2) 

where 𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) is the continuation value function as defined in Appendix B. Suppose 
that the continuation value function is differentiable with respect to 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 and the 
choices constraints are unbinding. The unique optimal choices can be found by solving the FOCs 
if the optimization objective function is concave and the choice set is convex. 

Using the EGM approach, we first construct an exogenous grid for post-decision-state 
(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1). For each point on this grid, we evaluate the continuation value function and its 
derivatives and then determine the optimal choices. Since the pre-decision-state variables are 
endogenously determined, the grid constructed from their values are called an endogenous 
grid. A more detailed description of EGM can be found in Appendix B. The benefit of the EGM is 
that the optimal choices are found without numerical optimization, which is iterative and time-
consuming. The continuation value, which is the expectation over the next-period variables, is 
only taken once for each exogenous grid point. In contrast, the numerical optimization used in 
VFI requires iterative procedures that calculate expectation in each iteration. 

Druedahl and Jørgensen (2017) discuss the three challenges in generalizing the EGM to multi-
dimensional models with non-convexities and constraints.   

• Irregular endogenous grids: The endogenous pre-decision grid points are unevenly 
spaced due to the non-linearlity of Euler equations.  

• Non-sufficient FOCs: When the objective function is not concave, FOCs are only 
necessary but not sufficient. There can be multiple points that satisfy FOCs.  

• No prior knowledge on where the constraints are binding6: In a multi-dimensional 
model with multiple constraints, there is no prior knowledge about the location in the 
state space where constraints are binding. 

Druedahl and Jørgensen (2017) propose a generalized EGM to tackle these challenges. Their 
method does not require sufficient FOCs or prior knowledge about whether the constraints are 
binding. It provides optimal choices for points on a regular exogenous grid over pre-decision 
states. The GEGM divides the optimization problem into segments in which it is known whether 
choices are constrained and the value function is evaluated. Druedahl and Jørgensen (2017) 
demonstrate that the GEGM is approximately 20 times faster than a highly optimized 
implementation of VFI with both methods designed to achieve a given level of precision. A 
detailed comparison of the speed and accuracy between GEGM and VFI can be found in 
Druedahl and Jørgensen (2017). 

For a working individual at time 𝑡𝑡, for 𝑡𝑡 < 40, we take the following procedures to determine 
optimal choices for the points on a regular exogenous grid over pre-decision states: 

1. Construct a common regular exogenous grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅 over the pre-decision state 

(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1). 
2. For each segment 

a. Construct a common regular grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅 over the post-decision state 

 
6 A constraint is considered to be binding if changing it also changes the optimal solution, while a constraint that does not affect the optimal 
solution is non-binding. 
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(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1).  
b. Determine the optimal choices for each point in the common regular grid 𝒢𝒢𝑡𝑡

𝑎𝑎,𝑏𝑏,𝜅𝜅 
using FOCs. 

c. Determine the pre-decision state corresponding to each point on the post-
decision grid 𝒢𝒢𝑡𝑡

𝑎𝑎,𝑏𝑏,𝜅𝜅. Construct the endogenous grid on the pre-decision state 
(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1). 

d. Determine optimal choices and evaluate 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1) for each point in the 
exogenous grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅 by interpolating the endogenous grid. 
3. For each point on the common exogenous grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅, the optimal choice is selected 
from the segment with the highest value of choice. 

To solve the Bellman equation for a retiree at time 𝑡𝑡, for 𝑡𝑡 < 40, we include the longevity 
annuity payment 𝐿𝐿 as a state variable. We construct a common regular exogenous grid 
𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅,𝐿𝐿 over the pre-decision state (𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1, 𝐿𝐿) and a common regular exogenous grid 

𝒢𝒢𝑡𝑡
𝑎𝑎,𝑏𝑏,𝜅𝜅,𝐿𝐿 over the post-decision state (𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1, 𝐿𝐿). The remaining steps are the same as 

those described above for the working individual. The Bellman equation is solved backwards 
from age 99 to 98, 97, …, 25 such that the lifetime utility is maximized.  

6.2  Segments 
Evaluation by segment is the key step in GEGM to address the challenge of no prior knowledge 
on where the constraints are binding. The segmentation should ensure that the binding 
constrains can be identified in each segment.  

For a working individual, there are two choices: consumption and RRSP contribution. When 𝑐𝑐𝑡𝑡 
is unconstrained, the optimal consumption is always positive since zero consumption leads to 
infinitely negative utility. Therefore, 𝑐𝑐𝑡𝑡 > 0 is unbinding. Assuming that the individual cannot 
borrow to consume, consumption should be a value such that 𝑎𝑎𝑡𝑡 ≥ 0. For the RRSP 
contribution, we assume that it is always non-negative and it has to be smaller than 𝑢𝑢𝑑𝑑𝑡𝑡 =
0.13𝑌𝑌𝑡𝑡. 

The GEGM algorithm proposed by Druedahl and Jørgensen (2017) assumes that the value 
function is differentiable w.r.t. 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡. If this assumption holds in our setup, we should 
consider six segments:   

1.  𝑎𝑎𝑡𝑡 = 0 and 𝑑𝑑𝑡𝑡 = 0 (both 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 are constrained).  

2.  𝑎𝑎𝑡𝑡 = 0 and 𝑑𝑑𝑡𝑡 = 𝑢𝑢𝑑𝑑𝑡𝑡 (both 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 are constrained).  

3.  𝑎𝑎𝑡𝑡 = 0 and 𝑑𝑑𝑡𝑡 ∈ (0,𝑢𝑢𝑑𝑑𝑡𝑡) (𝑐𝑐𝑡𝑡 is constrained, but 𝑑𝑑𝑡𝑡 is not).  

4.  𝑎𝑎𝑡𝑡 > 0 and 𝑑𝑑𝑡𝑡 = 0 (𝑑𝑑𝑡𝑡 is constrained, but 𝑐𝑐𝑡𝑡 is not).  

5.  𝑎𝑎𝑡𝑡 > 0 and 𝑑𝑑𝑡𝑡 = 𝑢𝑢𝑑𝑑𝑡𝑡 (𝑑𝑑𝑡𝑡 is constrained, but 𝑐𝑐𝑡𝑡 is not).  

6.  𝑎𝑎𝑡𝑡 > 0 and 𝑑𝑑𝑡𝑡 ∈ (0,𝑢𝑢𝑑𝑑𝑡𝑡) (neither choice is constrained).  

For a retiree, 𝑑𝑑𝑡𝑡 < 0 for pension withdrawal and 𝑑𝑑𝑡𝑡 is subject to the minimum withdrawal 
requirement. The interval of 𝑑𝑑𝑡𝑡 is thus divided into 𝑑𝑑𝑡𝑡 = −𝑏𝑏𝑡𝑡, 𝑑𝑑𝑡𝑡 = 𝑢𝑢𝑑𝑑𝑡𝑡, and 𝑑𝑑𝑡𝑡 ∈
(−𝑏𝑏𝑡𝑡,𝑢𝑢𝑑𝑑𝑡𝑡) where −𝑢𝑢𝑑𝑑𝑡𝑡 is the minimum withdrawal amount. 
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6.3  Accommodating non-differentiable value function 
Personal income tax is a piecewise linear function of income due to income tax thresholds 
presented in Table 1. For a working individual, the RRSP contribution is tax-deductible. For a 
retired individual, an RRSP withdrawal is treated as taxable income. In addition, the OAS 
pension and GIS amount are reduced when other income received by a retired individual 
exceeds certain threshold values. These threshold values lead to a number of kinks in 𝑔𝑔(𝑑𝑑𝑡𝑡). As 
a result, 𝑔𝑔(𝑑𝑑𝑡𝑡) is also a piecewise linear function of 𝑑𝑑𝑡𝑡 and the value function is not always 
differentiable w.r.t. 𝑑𝑑𝑡𝑡. 

To address the differentiability problem, we further divide the domain of 𝑑𝑑𝑡𝑡 into smaller 
intervals. Suppose that there are 𝑛𝑛 + 1 income threshold values, {ℎ0,ℎ1, … ,ℎ𝑛𝑛}, where ℎ0 =
0. The tax rate that applies to the income bracket (ℎ𝑗𝑗 ,ℎ𝑗𝑗+1) is 𝑟𝑟𝑡𝑡𝑗𝑗+1. The tax rate of 𝑟𝑟𝑡𝑡𝑛𝑛+1 
applies to the income bracket of (ℎ𝑛𝑛,∞). It is obvious that 𝑔𝑔(𝑑𝑑𝑡𝑡) is not differentiable if 𝑌𝑌𝑡𝑡 −
𝑑𝑑𝑡𝑡 falls at one of the threshold values. 

Assume that 𝑌𝑌𝑡𝑡 ∈ (ℎ𝑖𝑖 ,ℎ𝑖𝑖+1). Let 𝑛𝑛� = min𝑗𝑗 s.t. 𝑌𝑌𝑡𝑡 − ℎ𝑗𝑗 ≤ 𝑢𝑢𝑑𝑑𝑡𝑡. We divide the domain of 𝑑𝑑𝑡𝑡 
into the following segments:  

• Segment d.1: (0,𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖)  

• Segment d.2: (𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖,𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖−1)  

• Segment d.3: (𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖−1,𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖−2)  

• ...  

• Segment d.(𝑖𝑖 − 𝑛𝑛� + 1): (𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛�+1,𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛�)  

• Segment d.(𝑖𝑖 − 𝑛𝑛� + 2): (𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛� ,𝑢𝑢𝑑𝑑𝑡𝑡)  

• Segment d.(𝑖𝑖 − 𝑛𝑛� + 3): 0  

• Segment d.(𝑖𝑖 − 𝑛𝑛� + 4): 𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖   

• Segment d.(𝑖𝑖 − 𝑛𝑛� + 5): 𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖−1  

• ...  

• Segment d.(2(𝑖𝑖 − 𝑛𝑛� + 2)): 𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛�   

• Segment d.(2(𝑖𝑖 − 𝑛𝑛� + 2) + 1): 𝑢𝑢𝑑𝑑𝑡𝑡  

𝑔𝑔(𝑑𝑑𝑡𝑡) is a linear and differentiable function of 𝑑𝑑𝑡𝑡 on each of the segments d.1 to d.(𝑖𝑖 − 𝑛𝑛� +
2), and 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡) = 𝑟𝑟𝑡𝑡𝑖𝑖+1, 𝑟𝑟𝑡𝑡𝑖𝑖, … , 𝑟𝑟𝑡𝑡𝑛𝑛�  respectively. However, 𝑔𝑔(𝑑𝑑𝑡𝑡) is not differentiable at 
𝑑𝑑𝑡𝑡 = 0,𝑌𝑌𝑡𝑡 − ℎ𝑖𝑖 , … ,𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛� , 𝑢𝑢𝑑𝑑𝑡𝑡. 

For each segment of 𝑑𝑑𝑡𝑡, we consider both constrained 𝑐𝑐𝑡𝑡 (𝑎𝑎𝑡𝑡 = 0) or non-constrained 𝑐𝑐𝑡𝑡 
(𝑎𝑎𝑡𝑡 > 0). Therefore, there are 4(𝑖𝑖 − 𝑛𝑛�) + 6 segments for 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 in total. We will 
evaluate the value function and make choices for each segment. The choices leading to the 
highest value function among all segments are the optimal solution. More details about the 
value function evaluation by segment are presented in Appendix C. For a retiree, a similar 
approach is taken to allow non-differentiable value function. 
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6.4  Simulating scenarios 
With the optimal choices and value function determined for all possible points on the common 
regular grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅,𝐿𝐿 or 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅, we can use simulation and interpolation to study the pattern of 

future consumption and RRSP deposit/withdrawal by following the procedures below:   

1. Let 𝑡𝑡 = 1. We have 𝑚𝑚𝑡𝑡 = 𝑦𝑦0 and 𝑛𝑛𝑡𝑡 = 0. 𝜅𝜅𝑡𝑡−1 is known.  
2. Determine the optimal choices 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 using linear interpolation over the optimal 

choices obtained for the common regular grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅. Simulate investment return and 

mortality rate for year 𝑡𝑡 and calculate 𝑚𝑚𝑡𝑡+1, 𝑛𝑛𝑡𝑡+1, and 𝜅𝜅𝑡𝑡 based on the simulated 
values.  

3. Repeat Step 3 for 𝑡𝑡 = 2,3, … ,40.  
4. For 𝑡𝑡 = 41, determine the optimal choices 𝑐𝑐𝑡𝑡, 𝑑𝑑𝑡𝑡, and 𝐿𝐿 using linear interpolation 

over the optimal choices obtained for the common regular grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅. Simulate 

investment return and mortality rate for year 𝑡𝑡 and calculate 𝑚𝑚𝑡𝑡+1, 𝑛𝑛𝑡𝑡+1, and 𝜅𝜅𝑡𝑡 
based on the simulated values.  

5. For 𝑡𝑡 = 41,42, … 74, determine the optimal choices 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡, and 𝐿𝐿 using linear 
interpolation over the optimal choices obtained for the common regular grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅,𝐿𝐿. 
Simulate investment return and mortality rate for year 𝑡𝑡 and calculate 𝑚𝑚𝑡𝑡+1, 𝑛𝑛𝑡𝑡+1, 
and 𝜅𝜅𝑡𝑡 based on the simulated values.  

6. For 𝑡𝑡 = 75, optimal choices are 𝑑𝑑𝑡𝑡 = −𝑛𝑛𝑡𝑡 and 𝑐𝑐𝑡𝑡 = 𝑚𝑚𝑡𝑡 − 𝑑𝑑𝑡𝑡 + 𝑔𝑔(𝑑𝑑𝑡𝑡).  

7  Results based on Canadian male mortality data 
7.1  Simulated lifetime utility and behaviours 
The life cycle setup assumes that the individual turns age 25 at the beginning of 2018 and the 
value of 𝜅𝜅𝑡𝑡 for year 2017 (𝑡𝑡 = 0) is known at the outset. However, the HMD Canadian 
mortality data only range up to year 2016. To fill the gap, we use the mean forecast of 𝜅𝜅𝑡𝑡 for 
year 2017 as a known value. 

We assume that the annual effective risk-free interest rate is 1% and the annual return of the 
risky assets follows log-normal distribution 𝐿𝐿𝐿𝐿(0.04,0.2). The time-preference parameter 𝛽𝛽 
is set to 0.97. The risk-aversion parameter 𝛾𝛾 is set to 5. We use 10-point Gaussian quadrature 
to approximate the expectation when calculating the continuation value. The number of points 
for the common grid is 10 for each dimension. 

The individual earns the Canadian average salary for his age. His pre-tax salary 𝑌𝑌𝑡𝑡 in year 𝑡𝑡 at 
age 25 + 𝑡𝑡 − 1 follows a cubic function. The cubic-function parameters are estimated by 
matching the average wage, salaries, and commissions by age group for Canadian males in 
2017, which are shown in Table 2. By minimizing the squared errors, we obtain the following 
estimated salary function:  

 𝑌𝑌25+𝑡𝑡 = 140,600 − 10,128(25 + 𝑡𝑡) + 329(25 + 𝑡𝑡)2 − 3.017(25 + 𝑡𝑡)3. (3) 
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Table 2: Average wage, salaries, and commissions for Canadian males by age groups in 2017 

Age group  Wages, salaries, and 
commissions 

-34   51,400 

-44   68,800 

-54   79,600 

-64   65,700 

Figure 3: Estimated average salary by age 

 
We consider individuals with three different salary levels for comparison purposes:   

• Medium income: the individual has the salary pattern expressed by Equation (5) and 
shown as the solid line in Figure 3. 

• Low income: the individual earns half of the medium income at all ages with the salary 
pattern shown as the dashed line in Figure 3.  

• High income: the individual earns 40% more than the medium income at all ages with 
the salary pattern shown as the dash-dotted line in Figure 3.  

We also compare the cases with and without access to a longevity annuity. Therefore, a total of 
six cases are compared. For each case, we construct state-variable grids and determine optimal 
choices for all the points on the grids. We then simulate mortality and investment scenarios, 
calculate the optimal choices under the simulated scenarios, and compute the lifetime utility of 
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the individual. 

Table 3 shows the average simulated lifetime utility for the six cases. The simulated lifetime 
utility of the individual with a medium income and access to a longevity annuity is averaged at 
−1.4835e−17, which is significantly higher than −1.7282e−17, the lifetime utility for the 
individual with a medium income but no access to a longevity annuity. Similarly, there is 
significant utility gain for the individual with a high income when access to a longevity annuity is 
allowed. However, the utility gain for the individual with a low income is marginal. Therefore, 
the individual with a low income does not benefit from access to a longevity annuity. We also 
observe that both medium- and high-income individuals convert an average of 25% of RRSP 
assets to a longevity annuity, which is the upper limit we impose on the purchase of a longevity 
annuity. The low-income individual converts an average of a mere 2% of RRSP assets to a 
longevity annuity, thereby indicating that the benefit of a longevity annuity is minimal and 
demand is low among low-income individuals. 

 Table 3: Maximum lifetime utility with and without longevity annuity access 

Salary level Low Medium High 

Optimal conversion rate 1.89% 24.99% 25% 

Utility with access (× 10−18) −195.37 −14.835 −4.829 

Utility w/o access (× 10−18) −195.85 −17.282 −5.765 

Low income individuals do not purchase or benefit from longevity annuity because longevity 
annuity payment may significantly reduce GIS amount. The maximum annual income to receive 
GIS pension is $17,880 for a single pensioner. The total of CPP pension and minimum 
withdrawal from a registered account for a low income individual is much lower than $17,880. 
Per dollar of longevity annuity payment reduces GIS amount by approximately 59 cents until 
the GIS amount reaches zero. The loss of GIS amount outweighs the benefit of longevity 
annuity.  

Figure 4 shows the average values of simulated state variables and optimal choices for the 
individual with a medium income and with/without access to a longevity annuity. The dashed 
(solid) lines correspond to the case without (with) access to a longevity annuity. The right-
bottom panel of Figure 4 displays the absolute value of 𝑑𝑑𝑡𝑡. We notice that the dashed and solid 
lines start to deviate from each other from time 23 or age 48. With longevity annuity access, 
the individual chooses to contribute more into his RRSP. Therefore, 𝑠𝑠𝑖𝑖𝑚𝑚𝑛𝑛 becomes higher 
than 𝑠𝑠𝑖𝑖𝑚𝑚𝑛𝑛

𝑤𝑤𝑤𝑤 after age 48. At age 65, 𝑠𝑠𝑖𝑖𝑚𝑚𝑛𝑛 drops below 𝑠𝑠𝑖𝑖𝑚𝑚𝑛𝑛
𝑤𝑤𝑤𝑤 because a portion of the 

RRSP is converted to a longevity annuity. We also observe changes in both the dashed and solid 
lines around age 55. At age 55, the mortgage is paid off and thus more liquid resources are 
available for consumption and RRSP contributions. The individual with no access to a longevity 
annuity deposits more into his TFSA while the one with access saves more in his RRSP. 

Prior to retirement, there is no obvious difference in consumption between the two cases. After 
retirement, we observe that the individual with longevity annuity access always consumes 
more than the one without access. The individual with access to a longevity annuity withdraws 
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more of his pension fund than the one without access between age 65 and 70, but significantly 
less after age 70. After age 70, he consumes more from his TFSA. At age 80, his RRSP has been 
depleted and his consumptions at higher ages are supported by his longevity annuity, savings, 
CPP pension, OAS pension, and GIS.   

Figure 4: Comparing the simulated scenarios for the medium-income individual with and 
without access to a longevity annuity 

 
In Figure 5, we plot the simulation results for the low-income individual with and without 
access to longevity annuity. We observe that the difference due to the longevity annuity 
provision is negligible, thereby verifying our conclusion that a longevity annuity does not 
significantly benefit low-income individuals. We also notice that the individual withdraws a 
large amount of his RRSP/RPP in the first few years of retirement. This is due to the fact that 
the GIS amount is reduced by approximately 59 cents per extra dollar of annual income until 
the GIS amount hits zero. The maximum annual income to receive the GIS pension is $17,880 
for a single pensioner. The individual is better off withdrawing his RRSP/RPP in large lump sums 
such that he only loses his GIS in the years that he makes large withdrawals. Low-income 
individuals have on average approximately $136,600 in their RRSP/RPP at age 65. Let us 
consider two withdrawal strategies. The first strategy is withdrawing $17,075 every year for 
eight years. Assuming that the RRSP/RPP withdrawal is the only income besides the OAS 
pension, he will receive $478 of GIS per year for these eight years. The second strategy is 
withdrawing $68,300 per year in the first two years and thus depleting his RRSP/RPP account in 
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two years. He receives no GIS for the first two years but the full amount of $10,567 per year for 
the remaining six years. Although more personal income tax needs to be paid when a large 
lump sum of RRSP/RPP is withdrawn using the second strategy, the benefit of extra GIS 
received outweighs the negative tax impact. 

  

Figure 5: Comparing the simulated scenarios for the low-income individual with and without 
access to a longevity annuity 

 
The analysis above shows that the provision of a longevity annuity significantly improves the 
lifetime utility of medium- and high-income individuals. To quantify the improvement in dollar 
values, we analyse how much cash infusion the individual without access to a longevity annuity 
needs at age 25 to achieve the same lifetime utility as the individual with access. The individual 
with a medium income and no longevity annuity access needs an $11,880 cash infusion at age 
25 in order to match the utility of the medium-income individual with access. However, the 
low-income individual without access only needs a $33 cash infusion at age 25 in order to 
match the utility of the low-income individual with access. 

In Table 4, we present the optimal conversion rates at various income levels. We observe that 
the optimal conversion rate only starts to decrease when an individual earns an income lower 
than 70% of medium income. 
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Table 4: Optimal conversion rate for individual at different income levels, assuming  
zero premium loading 

Income (% of 
medium income) 

50 55 60 70 80 90 100 

Optimal conversion 
rate 

 0%  19.50% 21.07% 24.24%  24.86%  24.97% 25.00%  

7.2  Sensitivity tests 

7.2.1  Numbers of grid points in GEGM 

The numbers of grid points for 𝑚𝑚𝑡𝑡, 𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡, 𝐿𝐿, 𝑎𝑎𝑡𝑡 and 𝑏𝑏𝑡𝑡 used in the exogenous regular grids 
are 𝑛𝑛𝑚𝑚 = 20, 𝑛𝑛𝑛𝑛 = 20, 𝑛𝑛𝜅𝜅 = 10, 𝑛𝑛𝐿𝐿 = 10, 𝑛𝑛𝑎𝑎 = 40, and 𝑛𝑛𝑏𝑏 = 40 respectively. We 
examine how the optimal conversion rate and lifetime utility change with the number of grid 
points in Table 5. While increasing or decreasing the numbers of grid points has no impact on 
the simulated average optimal conversion rate, the maximized lifetime utility changes by a 
small amount.  

Table 5: Optimal conversion rates and lifetime utilities for a medium income individual using 
different grid sizes in GEGM 

 (𝑛𝑛𝑚𝑚, 𝑛𝑛𝑛𝑛, 𝑛𝑛𝜅𝜅 ,𝑛𝑛𝐿𝐿 ,𝑛𝑛𝑎𝑎, 𝑛𝑛𝑏𝑏) Utility (×10−18) Optimal conversion 
rate 

 (20,20,20,20,40,40) −14.835 25.00% 

 (30,30,10,10,90,90) −14.894 25.00% 

 (10,10,10,10,10,10) −15.352 25.00% 

7.2.2  Premium loading 

We expect that the demand or the optimal conversion rate decreases with the price of 
longevity annuity. In Table 6, we consider four loading levels for a medium income individual. 
When 20% loading is applied, the longevity annuity with $1 regular payment is sold for 
$(1. 215|�̈�𝑎65,41) and the optimal conversion rate remains at 25%. Due to the limit of 25% 
conversion rate, the individual always purchases the maximum amount allowed under the case 
of 0%-25% loading. When the loading is further increased to 50% and 100%, we observe that 
the conversion rate reduces. Given that the actual loadings are usually lower than 20%, we 
should expect the medium income individual to convert 25% of their RRSP/RPP to longevity 
annuity. 
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Table 6: Optimal conversion rate for medium income individuals under different levels of 
longevity annuity premium loading 

 Premium loading 0% 20% 50% 100% 

 Optimal conversion rate 25.00% 24.99% 24.75% 13.95% 

7.2.3  Conversion limit 

In the above analysis, we set the maximum conversion rate to 25%. For medium and high-
income individuals, the optimal conversion rate hits the 25% limit in most of the simulated 
scenarios. In Table 7, we increase the conversion limit to 35%, 50%, and 75%. We observe that 
the optimal conversion rate increases with the conversion limit. When the limit is set to 35%, 
the average simulated optimal conversion rate is 34.95%, thereby indicating that the majority 
of simulated optimal conversion rates hits the upper limit. When the conversion limit increases 
from 50% to 75%, the change in the conversion rate is marginal, thereby indicating that most of 
the simulated optimal conversion rates lie below 50%. 

Table 7: Optimal conversion rates under different conversion limits for a medium income 
individual 

 Conversion limit 25% 35% 50% 75% 

 Optimal conversion rate 25.00% 34.95% 39.25% 39.27% 

7.2.4  Mortality level 

Longevity annuity is priced under the assumption of population mortality curve. However, 
individuals have more information about their own health and thus use their perceived future 
mortality when making decisions. We revisit the life cycle model using perceived mortality for 
ages 65 to 99. The perceived mortality rate at age 𝑥𝑥 in year 𝑡𝑡, denoted by 𝑚𝑚�𝑥𝑥,𝑡𝑡, is assumed to 
be a multiple of 𝑚𝑚𝑥𝑥,𝑡𝑡 and is expressed as follows:  

𝑚𝑚�𝑥𝑥,𝑡𝑡 = 𝜓𝜓 ⋅ 𝑚𝑚𝑥𝑥,𝑡𝑡 
= 𝜓𝜓 ⋅ 𝑒𝑒𝛽𝛽𝑥𝑥

(0)+𝛽𝛽𝑥𝑥
(1)𝜅𝜅𝑡𝑡 

= 𝜓𝜓 ⋅ 𝑒𝑒ln 𝑐𝑐+𝛽𝛽𝑥𝑥
(0)+𝛽𝛽𝑥𝑥

(1)𝜅𝜅𝑡𝑡 
= 𝜓𝜓 ⋅ 𝑒𝑒𝛽𝛽�𝑥𝑥

(0)+𝛽𝛽𝑥𝑥
(1)𝜅𝜅𝑡𝑡 , 

where �̂�𝛽𝑥𝑥
(0) = ln 𝑐𝑐 + 𝛽𝛽𝑥𝑥

(0). The life cycle model setup remains unchanged except that we 
replace 𝛽𝛽𝑥𝑥

(0) by �̂�𝛽𝑥𝑥
(0). 

Table 8 presents the optimal conversion rates using perceived mortalities. Under the three 
scenarios of perceived mortality and 25% conversion limit, the average simulated conversion 
rate is always 25% for medium income individuals. When the conversion limit is increased to 
50%, we observe that individuals with lower perceived mortality purchase significantly more 
longevity annuity.  
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Table 8: Optimal conversion rates using perceived mortalities for ages 65–99 

𝜓𝜓 0.5 1 1.5 

Optimal conversion rate 25% limit 25.00% 25.00% 25.00% 

 50% limit 44.19% 39.25% 35.05% 

7.2.5  Risk aversion parameter 

Table 9 presents the optimal conversion rates using different risk aversion parameters. When 
the conversion limit is set to 25%, relative risk aversion does not change in the average 
simulated optimal conversion rate for medium income individuals. When the conversion limit is 
set to 50%, we observe that less risk averse individuals purchase more longevity annuity. 

Table 9: Optimal conversion rates under various assumptions of relative risk aversion for 
medium income individuals 

𝛾𝛾 3 5 7 

Optimal conversion rate (25% limit) 25.00% 25.00% 25% 

 (50% limit) 43.71% 39.25% 36.95% 

 

8  Results based on CPP mortality data 
8.1  CPP mortality data 
We obtained the CPP mortality data by pension groups from the Office of the Superintendent 
of Financial Institutions Canada. The mortality data include exposure and death counts for 
males and females at the age range of 60–120 in years 1967–2015. The pension groups used for 
segregating the data are as follows: 

1. 0% to 9% of the maximum pension.  

2. 10% to 19% of the maximum pension.  

3. 20% to 29% of the maximum pension.  

4. 30% to 39% of the maximum pension.  

5. 40% to 49% of the maximum pension.  

6. 50% to 59% of the maximum pension.  

7. 60% to 69% of the maximum pension.  

8. 70% to 79% of the maximum pension.  

9. 80% to 89% of the maximum pension.  

10. 90% to 99% of the maximum pension.  
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11. Greater than or equal to 100% of the maximum pension7.  

8.2  Model and estimation 
In Section 6, we consider individuals with different pre-retirement income levels. The CPP 
pension received by the low pre-retirement-income individual is approximately 59% of the 
maximum CPP pension. Therefore, the low-income individual belongs to the pension group 6. 
The CPP pension received by the medium-income individual is approximately 98% of the 
maximum pension, thereby falling into the pension group 10. The CPP pension received by the 
high-income individual is the maximum pension, thereby belonging to the pension group 11. In 
the following, we model the mortality of pensioners in pension groups 6, 10, and 11. 

We consider the augmented common factor (ACF) model proposed by Li and Lee (2005). The 
model is structured as follows:  

 ln(𝑚𝑚𝑥𝑥,𝑡𝑡
(𝑔𝑔)) = 𝑎𝑎𝑥𝑥

(𝑔𝑔) + 𝐵𝐵𝑥𝑥𝐾𝐾𝑡𝑡 + 𝑏𝑏𝑥𝑥
(𝑔𝑔)𝑘𝑘𝑡𝑡

(𝑔𝑔), 

where 𝑚𝑚𝑥𝑥,𝑡𝑡
(𝑔𝑔) is pension group 𝑔𝑔’s central death rate at age 𝑥𝑥 and in year 𝑡𝑡, 𝑎𝑎𝑥𝑥

(𝑔𝑔) is the age-
specific parameter indicating pension group 𝑔𝑔’s average mortality at age 𝑥𝑥, 𝐾𝐾𝑡𝑡 is the time-
varying index that affects all pension groups to be modelled, 𝑘𝑘𝑡𝑡

(𝑔𝑔) is the time-varying index 
that is specific to pension group 𝑔𝑔, and 𝐵𝐵𝑥𝑥 and 𝑏𝑏𝑥𝑥

(𝑔𝑔) respectively are age-specific parameters 
reflecting the sensitivity of ln(𝑚𝑚𝑥𝑥,𝑡𝑡

(𝑔𝑔)) to 𝐾𝐾𝑡𝑡 and 𝑘𝑘𝑡𝑡
(𝑔𝑔). 

The ACF model is estimated using the MLE method. Figure 6 shows the estimates of 𝑎𝑎𝑥𝑥
(𝑔𝑔), 𝐵𝐵𝑥𝑥, 

𝐾𝐾𝑡𝑡, 𝑏𝑏𝑥𝑥
(𝑔𝑔) and 𝑘𝑘𝑡𝑡

(𝑔𝑔) fitted to the CPP male data in pension groups 6, 10, and 11 using the 
sample period of 1991–2015 and age range of 65–89. 

  

 
7 There are two ways for a pensioner to have more than 100% of the maximum pension: (1) convert pre-existing disability benefits into the CPP 
at retirement, and (2) convert a pre-existing survivor pension into the CPP at retirement.  
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Figure 6: Estimates of 𝒂𝒂𝒙𝒙
(𝒈𝒈), 𝑩𝑩𝒙𝒙, 𝑲𝑲𝒕𝒕, 𝒃𝒃𝒙𝒙

(𝒈𝒈), and 𝒌𝒌𝒕𝒕
(𝒈𝒈) fitted to the CPP male data 

 
8.3  Prediction 
Following Li and Lee (2005), we assume a random walk with drift for 𝐾𝐾𝑡𝑡:  

 𝐾𝐾𝑡𝑡 = 𝜇𝜇 + 𝐾𝐾𝑡𝑡−1 + 𝜎𝜎𝜔𝜔𝑡𝑡, 

where 𝜇𝜇 is the drift term and {𝜔𝜔𝑡𝑡} is a sequence of i.i.d. standard normal random variables. 
For each 𝑘𝑘𝑡𝑡

(𝑔𝑔), we assume a first-order autoregressive process:  

 𝑘𝑘𝑡𝑡
(𝑔𝑔) = 𝜙𝜙0

(𝑔𝑔) + 𝜙𝜙1
(𝑔𝑔)𝑘𝑘𝑡𝑡−1

(𝑔𝑔) + 𝜎𝜎(𝑔𝑔)𝜁𝜁𝑡𝑡
(𝑔𝑔), 

where 𝜙𝜙0
(𝑔𝑔), 𝜙𝜙1

(𝑔𝑔), and 𝜎𝜎(𝑔𝑔) are constants, and {𝜁𝜁𝑡𝑡
(𝑔𝑔)} is a sequence of i.i.d. standard normal 

random variables. We further assume that 𝜁𝜁𝑡𝑡
(𝑔𝑔) and 𝜔𝜔𝑡𝑡 are independent with each other and 

𝜁𝜁𝑡𝑡
(𝑖𝑖) and 𝜁𝜁𝑡𝑡

(𝑗𝑗) for 𝑖𝑖 ≠ 𝑗𝑗 are also independent. Table 6 shows the estimates of 𝜙𝜙0
(𝑔𝑔), 𝜙𝜙1

(𝑔𝑔), 𝜎𝜎, 
𝜇𝜇, and 𝜎𝜎(𝑔𝑔). Figure 7 shows the prediction intervals of 𝐾𝐾𝑡𝑡, 𝑘𝑘𝑡𝑡

(6), 𝑘𝑘𝑡𝑡
(10), 𝑘𝑘𝑡𝑡

(11) for 𝑡𝑡 =
2016, … ,2040. 
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Table 6: Estimates of 𝝓𝝓𝟎𝟎
(𝒈𝒈), 𝝓𝝓𝟏𝟏

(𝒈𝒈), 𝝈𝝈(𝒈𝒈), 𝝁𝝁 and 𝝈𝝈 fitted to the CPP male data 

Pension group 6 10 11 

𝜙𝜙0
(𝑔𝑔) 0.0073 0.0019 −0.0148 

𝜙𝜙1
(𝑔𝑔) 0.5408 0.7553 0.7554 

𝜎𝜎(𝑔𝑔) 0.4003 0.0009 0.0974 

𝜇𝜇 −0.4755 

𝜎𝜎 0.2306 

 

Let 𝑞𝑞𝑥𝑥,𝑡𝑡
(𝑔𝑔) = 1 − exp(−𝑚𝑚𝑥𝑥,𝑡𝑡

(𝑔𝑔)) represent the probability that an individual from pension group 𝑔𝑔 
who turns age 𝑥𝑥 at the beginning of year 𝑡𝑡 dies in year 𝑡𝑡. The 𝑇𝑇-year survival probability for 
this individual can be written as  

  𝑇𝑇𝑆𝑆𝑥𝑥,𝑡𝑡
(𝑔𝑔) = ∏𝑇𝑇−1

𝑗𝑗=0 (1 − 𝑞𝑞𝑥𝑥+𝑗𝑗,𝑡𝑡+𝑗𝑗
(𝑔𝑔) ). 

Figure 8 shows the prediction intervals of  𝑇𝑇𝑆𝑆65,2016
(6) ,  𝑇𝑇𝑆𝑆65,2016

(10) ,  𝑇𝑇𝑆𝑆65,2016
(11)  for 𝑇𝑇 = 1, … ,25. 
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Figure 7: Prediction intervals of 𝑲𝑲𝒕𝒕, 𝒌𝒌𝒕𝒕
(𝟔𝟔), 𝒌𝒌𝒕𝒕

(𝟏𝟏𝟎𝟎), 𝒌𝒌𝒕𝒕
(𝟏𝟏𝟏𝟏) 

 

 Figure 8: Prediction intervals of  𝑻𝑻𝑺𝑺𝟔𝟔𝟔𝟔,𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔
(𝟔𝟔) ,  𝑻𝑻𝑺𝑺𝟔𝟔𝟔𝟔,𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔

(𝟏𝟏𝟎𝟎) ,  𝑻𝑻𝑺𝑺𝟔𝟔𝟔𝟔,𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔
(𝟏𝟏𝟏𝟏)  for 𝑻𝑻 = 𝟏𝟏, … ,𝟐𝟐𝟔𝟔 
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8.4  Incorporating the impact of income class on mortality 
In Section 7, we analyse the utility gain of longevity annuity access for individuals with different 
pre-retirement income levels but the same mortality experience. However, the study of CPP 
mortality data indicates that lower mortality is associated with higher income levels. Therefore, 
it is necessary to incorporate the impact of income level on mortality in the life cycle model. 

Since the multi-population model described in the previous section includes two time-varying 
indexes, one common index for all pension groups and one individual index for a specific 
pension group, both indexes should be treated as state variables in the life cycle model. To 
minimize the change in the model formulation, we redefine 𝜅𝜅𝑡𝑡 in the life cycle model by 𝜅𝜅𝑡𝑡 =
[𝐾𝐾𝑡𝑡,𝑘𝑘𝑡𝑡

(𝑔𝑔)]. The optimization problem remains unchanged except that the constraints for 𝜅𝜅𝑡𝑡 are 
replaced by the follows:  

 𝜅𝜅𝑡𝑡 = [𝐾𝐾𝑡𝑡,𝑘𝑘𝑡𝑡
(𝑔𝑔)], 

 𝐾𝐾𝑡𝑡 = 𝜇𝜇 + 𝐾𝐾𝑡𝑡−1 + 𝜎𝜎𝜔𝜔𝑡𝑡, 

 𝑘𝑘𝑡𝑡
(𝑔𝑔) = 𝜙𝜙0

(𝑔𝑔) + 𝜙𝜙1
(𝑔𝑔)𝑘𝑘𝑡𝑡−1

(𝑔𝑔) + 𝜎𝜎(𝑔𝑔)𝜁𝜁𝑡𝑡
(𝑔𝑔). 

 

The CPP mortality data range from ages 60 to 120. Since there are no data available for younger 
ages, we begin the analysis from the retirement age 65. Assume that an individual turns 65 at 
the beginning of 2018. Let us denote the individual’s liquid assets and RRSP at the beginning of 
2018 as 𝑚𝑚0 and 𝑛𝑛0 respectively. For each income level, we set 𝑚𝑚0 and 𝑛𝑛0 to the average 
simulated liquid asset and RRSP of an individual with the same income level and without 
longevity annuity access at age 65 from Section 7. We evaluate the individual’s lifetime utility 
(from ages 65 to 100) under five scenarios:   

1. Low income and experiencing Group 6 mortality.  

2. Low income and experiencing Group 10 mortality.  

3. Medium income and experiencing Group 10 mortality.  

4. High income and experiencing Group 10 mortality.  

5. High income and experiencing Group 11 mortality.  

Since Group 10 mortality is close to the average mortality of all groups, we can view scenarios 2 
to 4 as the cases that do not consider the mortality difference among different income levels. 
The comparisons between scenarios 1 and 2 and between scenarios 4 and 5 demonstrate how 
the incorporation of the relation between mortality and income level affects our results. 

The results of the five scenarios are shown in Table 7. The low-income individual is better off 
without a longevity annuity purchase in both scenarios 1 and 2 while he achieves slightly lower 
utility in scenario 2 than in scenario 1. We observed that Group 10 mortality is lighter than 
Group 6 mortality in the previous section. As a result, the individual lives longer and the 
longevity annuity price is higher in scenario 2 than in scenario 1. Since the low-income 
individual does not purchase any longevity annuity, the decrease of utility in scenario 2 is due 
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to the fact that he has to live on the same amount of initial wealth for a longer period. In 
scenario 3, the medium-income individual still purchases the maximum amount of longevity 
annuity under his group-specific mortality. The access to a longevity annuity improves his utility 
significantly. In scenarios 4 and 5, the high-income individual also purchases the maximum 
amount of longevity annuity. When the high-income individual is assumed to experience Group 
10 mortality (scenario 4) instead of Group 11 mortality (scenario 5), he pays a lower price for a 
longevity annuity and his expected life expectancy is shorter. Therefore, a higher lifetime utility 
can be achieved in scenario 4. 

Based on the scenarios considered above, ignoring the mortality difference among income 
levels leads to utility underestimation for low-income individuals and overestimation for high-
income individuals. The incorporation of mortality difference among income levels does not 
appear to affect the percentage converted to a longevity annuity. This observation may be due 
to the coarse categorization of income levels used in the comparison. 

Table 7: The impact of longevity annuity access for retirees in different pension groups 

Scenario #1 #2 #3 #4 #5 

Income Low Medium High 

Pension group 6 10 11 

𝑚𝑚0 24,819 118,040 172,599 

𝑛𝑛0 137,100 345,570 628,516 

Mortality group 6 10 10 10 11 

Conversion rate 0 0 25% 25% 25% 

Utility with access (× 10−18) −24.752 −27.116 −3.291 −0.892 −1.000 

Utility w/o access (× 10−18) −24.752 −27.116 −6.043 −2.085 −2.196 

9  Conclusion 
In this report, we investigate the benefit of longevity annuity access for Canadians with 
different income levels. We develop a life cycle model to determine the optimal consumption, 
pension contribution/withdrawal, and conversion to a longevity annuity. Our life cycle model, 
built on realistic tax rules and the Canadian retirement income system, also incorporates 
stochastic mortality rates and investment returns. To optimize the lifetime utility, we propose a 
modified GEGM which can handle the non-differentiable problem caused by realistic tax rules 
and the Canadian retirement income system. 

Assuming the same mortality experience, we find that individuals with medium and high 
incomes greatly benefit from the access to a longevity annuity while low-income individuals 
benefit only marginally. A longevity annuity provides significant tax deferral for wealthy 
individuals with sufficient retirement income from other sources, because annuity payments 
begin at high ages and longevity annuity purchase reduces the minimum withdrawal from 
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registered accounts required for age 71 and above. Low-income individuals do not benefit as 
much since they have insufficient retirement income from other sources and are better off 
withdrawing more than the minimum requirement from registered accounts. 

We further consider the impact of income class on mortality experience using the CPP mortality 
data. We observe that individuals receiving a higher CPP pension generally experience lower 
mortality. Incorporating the group-specific mortalities, the optimal longevity annuity purchase 
does not change for the three CPP pension groups considered. However, we do observe small 
changes in the maximum utility achievable. The utility for high-income individuals decreases 
with the use of group-specific mortalities since a higher price is paid for longevity annuity and 
the individuals live on the same amount of wealth for a longer expected lifetime. The utility for 
low-income individuals increases with the use of group-specific mortalities since the individuals 
live on the same amount of wealth for a shorter expected lifetime. 

Low income individuals do not purchase longevity annuity because longevity annuity payment 
may significantly reduce GIS amount. To make longevity annuity beneficial for low income 
individuals, we may consider changing the calculation rule of GIS amount or modifying the 
payment pattern of longevity annuity. Some variations of longevity annuity have been 
proposed, including the variable investment-linked deferred annuity (Maurer et al., 2013) and 
ruin-contingent life annuity (Huang et al., 2009, 2014). In the future research, experimenting 
various GIS calculation rules and variations of longevity annuity is warranted with the aim of 
greater benefit for the low income class. 

The retirement age is fixed at 65 in this study. A possible direction of future research is to 
consider various retirement ages and examine how longevity annuity purchase changes with 
retirement age. We may also include retirement age as a decision variable and study the impact 
of longevity annuity access on the choice of retirement age.  
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Appendix A  Calculation of CPP pension payment 
Denote year 𝑡𝑡’s maximum pensionable earnings by YMPE 𝑡𝑡. We show an example of CPP 
pension amount calculation for an individual who begins to receive a CPP pension when he 
turns 65 on January 1, 2018. We assume that the maximum general drop-out period is applied 
for this individual. Denote 𝔸𝔸 as the list of contribution years that are not dropped out by the 
general drop-out. The following steps are taken to calculate the CPP pension amount: [(i)]  

1. Calculate the number of base contributory months. The base contribution period is 47 
years, from age 18 to age 65. Allowing 17% of the base contributory period (eight years) 
with lowest earnings to be dropped, the number of base contributory months is 
 𝐿𝐿𝑐𝑐𝑁𝑁 = (65 − 18 − 8) × 12 = 468.  

2. Calculate unadjusted pensionable earnings in year 𝑡𝑡, UPE 𝑡𝑡, for 𝑡𝑡 ∈ 𝔸𝔸:  

𝑈𝑈𝑐𝑐𝐸𝐸 𝑡𝑡 = min(𝑌𝑌𝑡𝑡,𝑌𝑌𝑁𝑁𝑐𝑐𝐸𝐸 𝑡𝑡) 

3. Calculate adjusted pensionable earnings in year 𝑡𝑡, APE 𝑡𝑡, for 𝑡𝑡 ∈ 𝔸𝔸:  

𝐴𝐴𝑐𝑐𝐸𝐸 𝑡𝑡 =
 𝑈𝑈𝑐𝑐𝐸𝐸 𝑡𝑡

 𝑌𝑌𝑁𝑁𝑐𝑐𝐸𝐸 𝑡𝑡
×
∑2018
𝑡𝑡=2014  𝑌𝑌𝑁𝑁𝑐𝑐𝐸𝐸 𝑡𝑡

5
 

4. Calculate total adjusted pensionable earnings (TAPE)  

𝑇𝑇𝐴𝐴𝑐𝑐𝐸𝐸 = �
𝑡𝑡∈𝔸𝔸

 𝐴𝐴𝑐𝑐𝐸𝐸 𝑡𝑡 

5. Calculate the monthly CPP retirement pension in 2018  

0.25 ×
 𝑇𝑇𝐴𝐴𝑐𝑐𝐸𝐸 
 𝐿𝐿𝑐𝑐𝑁𝑁 

 

Since the CPP pension amount is indexed to the CPI, the monthly CPP retirement pension in a 
future year 𝑡𝑡 for 𝑡𝑡 > 2018 is 0.25 ×  𝑇𝑇𝐴𝐴𝐶𝐶𝑇𝑇 

 𝑁𝑁𝐶𝐶𝑁𝑁 
×  𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡

 𝐶𝐶𝐶𝐶𝐶𝐶 2018
. 
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Appendix B  Endogenous grid method 
Carroll (2006) proposes the EGM, which avoids the iterative search in VFI and hence requires 
significantly less computation time. The fundamental idea of the EGM is to specify an 
exogenous grid over the post-decision state instead of over the pre-decision states. Recall that 
the value function 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) for 𝑡𝑡 ≤ 40 is a function of the pre-decision-state 
(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝑘𝑘𝑡𝑡−1). To illustrate the idea of EGM, we rewrite the value function into a function of 
post-decision-state (𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝑘𝑘𝑡𝑡−1) as follows:  

 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) 

 = max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡

𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝔼𝔼�𝑝𝑝25+𝑡𝑡−1,𝑡𝑡 𝑉𝑉𝑡𝑡+1(𝑚𝑚𝑡𝑡+1,𝑛𝑛𝑡𝑡+1, 𝜅𝜅𝑡𝑡)|𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1� 

 = max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡

𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝔼𝔼[𝑓𝑓(𝜅𝜅𝑡𝑡)𝑉𝑉𝑡𝑡+1(𝑚𝑚𝑡𝑡+1,𝑛𝑛𝑡𝑡+1, 𝜅𝜅𝑡𝑡)|𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1], 

 = max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡

𝑢𝑢(𝑐𝑐𝑡𝑡) 

 +𝛽𝛽𝔼𝔼[𝑓𝑓(𝜅𝜅𝑡𝑡−1 + Δ𝜅𝜅𝑡𝑡)𝑉𝑉𝑡𝑡+1(𝑒𝑒𝑅𝑅𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑦𝑦𝑡𝑡+1, 𝑒𝑒𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡 + 0.05𝑌𝑌𝑡𝑡+1, 𝜅𝜅𝑡𝑡−1 +
Δ𝜅𝜅𝑡𝑡)|𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1], 

where Δ𝜅𝜅𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎𝑧𝑧𝑡𝑡 and 𝑓𝑓(𝜅𝜅𝑡𝑡) = 𝑝𝑝25+𝑡𝑡−1,𝑡𝑡 = 𝑒𝑒−𝑚𝑚25+𝑡𝑡−1,𝑡𝑡 = 𝑒𝑒−𝑒𝑒
𝛽𝛽25+𝑡𝑡−1

(0) +𝛽𝛽25+𝑡𝑡−1
(1) 𝜅𝜅𝑡𝑡 . In the last 

equality, we change the conditioned variables from pre-decision-state variables (𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) 
to post-decision-state variables (𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) because (𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡) are a deterministic functions of 
(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡) given the choices (𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡). 

Since 𝑅𝑅𝑡𝑡 and Δ𝜅𝜅𝑡𝑡 are random variables independent from the post-decision-state variables 
and 𝑦𝑦𝑡𝑡+1 and 𝑌𝑌𝑡𝑡+1 are known values, the continuation value is a function of the post-
decision-state variables. Denoting the continuation value function by 𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1), where  

 𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) = 𝔼𝔼[𝑓𝑓(𝜅𝜅𝑡𝑡−1 + Δ𝜅𝜅𝑡𝑡)𝑉𝑉𝑡𝑡+1(𝑅𝑅𝑡𝑡+1𝑎𝑎 𝑎𝑎𝑡𝑡 + 𝑦𝑦𝑡𝑡+1, 𝑏𝑏𝑡𝑡𝑅𝑅𝑡𝑡+1𝑏𝑏 , 𝜅𝜅𝑡𝑡−1 +
Δ𝜅𝜅𝑡𝑡)|𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1], 

the value function can be rewritten as follows:  

 𝑉𝑉�𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) = max
𝑐𝑐𝑡𝑡,𝑑𝑑𝑡𝑡

𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1). (4) 

Note that 𝑎𝑎𝑡𝑡 and 𝑏𝑏𝑡𝑡 are functions of 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 due to the budget constraints. Suppose that 
the continuation value function is differentiable with respect to 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 and the choices 
constraints are unbinding. Using the FOCs, the optimal choices satisfy the following equations:  

 𝑐𝑐𝑡𝑡∗ = �𝛽𝛽𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)�
−1𝛾𝛾, (5) 

 𝑑𝑑𝑡𝑡∗ = 𝑔𝑔𝑑𝑑−1 �
𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)−𝑤𝑤𝑡𝑡,𝑏𝑏(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)

𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
�, (6) 

 where  

 𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡) = 𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
𝜕𝜕𝑎𝑎𝑡𝑡

, 

 𝑤𝑤𝑡𝑡,𝑏𝑏(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡) = 𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
𝜕𝜕𝑏𝑏𝑡𝑡

, 
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 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡) = 𝜕𝜕𝑔𝑔(𝑑𝑑𝑡𝑡)
𝜕𝜕𝑑𝑑𝑡𝑡

, 

and 𝑔𝑔𝑑𝑑−1(. ) is the inverse function of 𝑔𝑔𝑑𝑑(. ). A proof of equations (5) and (6) is provided in 
Appendix D. Assuming that the objective function is concave and the choice set is convex, the 
FOCs are sufficient conditions for global maximum and 𝑐𝑐𝑡𝑡∗ and 𝑑𝑑𝑡𝑡∗ must be the unique optimal 
choices. Using the EGM approach, we first construct an exogenous grid for post-decision-state 
(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1). For each point on this grid, we evaluate the continuation value function and its 
derivatives and then determine the optimal choices 𝑐𝑐𝑡𝑡∗ and 𝑑𝑑𝑡𝑡∗ using equations (5) and (6). 
Finally, we use the budget constraint to back out the values of the pre-decision-state variables 
corresponding to the optimal choices and post-decision-state variables as follows:  

 𝑚𝑚𝑡𝑡
∗ = 𝑎𝑎𝑡𝑡 + 𝑐𝑐𝑡𝑡∗ + 𝑑𝑑𝑡𝑡∗ − 𝑔𝑔(𝑑𝑑𝑡𝑡∗), 

 𝑛𝑛𝑡𝑡∗ = 𝑏𝑏𝑡𝑡 − 𝑑𝑑𝑡𝑡∗. 

Since the pre-decision-state variables are endogenously determined, the grid constructed from 
their values are called an endogenous grid. The benefit of the EGM is that the optimal choices 
are found without numerical optimization, which is iterative and time-consuming. The 
continuation value, which is the expectation over the next-period variables, is only taken once 
for each exogenous grid point. In contrast, the numerical optimization used in VFI requires 
iterative procedures that calculate expectation in each iteration. 
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Appendix C  Evaluating the value function by segments  
C.1  Constructing exogenous grids 
For year 𝑡𝑡, we first construct a common regular exogenous grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅 over the pre-decision 
states 𝑚𝑚𝑡𝑡, 𝑛𝑛𝑡𝑡, and 𝜅𝜅𝑡𝑡−1. The goal of the algorithm is to evaluate 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) for each 
point in the exogenous grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅. The algorithm runs backward from age 99 to 98, 97, …, 25. 
Therefore, the value function for year 𝑡𝑡 + 1, 𝑉𝑉𝑡𝑡+1(𝑚𝑚𝑡𝑡+1,𝑛𝑛𝑡𝑡+1, 𝜅𝜅𝑡𝑡), must be evaluated for 
points on the grid 𝒢𝒢𝑡𝑡+1

𝑚𝑚,𝑛𝑛,𝜅𝜅. 

We construct another common regular grid 𝒢𝒢𝑡𝑡
𝑎𝑎,𝑏𝑏,𝜅𝜅 over post-decision states 𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, and 𝜅𝜅𝑡𝑡−1 

and calculate 𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) and its derivatives 𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) and 𝑤𝑤𝑡𝑡,𝑏𝑏(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) on 
this grid using numerical integration and interpolation. 

C.2  Value function evaluation 

For each segment, we determine the values of 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) for all the points on the grid 
𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅. 

Case 1. Segments with both 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡 constrained: 𝑎𝑎𝑡𝑡 = 0 and 𝑑𝑑𝑡𝑡 = �̂�𝑑 ∈ {0,𝑌𝑌𝑡𝑡 − ℎ𝑗𝑗 ,𝑌𝑌𝑡𝑡 −
ℎ𝑗𝑗−1, … ,𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛�+1,𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛�} 

Since both choices are constrained, there is no need for EGM and we can directly work with the 
regular gird 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅. Given a point (𝑚𝑚�𝑡𝑡,𝑛𝑛�𝑡𝑡 , �̂�𝜅𝑡𝑡−1) on the exogenous grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅, we use the 

budget constraints to determine the consumption choice:  

 �̂�𝑐𝑡𝑡 = 𝑚𝑚�𝑡𝑡 − �̂�𝑑 + 𝑔𝑔(�̂�𝑑). 

The corresponding post-decision states are  

 𝑎𝑎�𝑡𝑡 = 0, 

 𝑏𝑏�𝑡𝑡 = 𝑛𝑛�𝑡𝑡 + �̂�𝑑. 

Interpolating the values of 𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) on the common grid 𝒢𝒢𝑡𝑡
𝑎𝑎,𝑏𝑏,𝜅𝜅, we can calculate 

𝑤𝑤𝑡𝑡(𝑎𝑎�𝑡𝑡,𝑏𝑏�𝑡𝑡, �̂�𝜅𝑡𝑡−1) and hence the value of 𝑉𝑉𝑡𝑡(𝑚𝑚�𝑡𝑡,𝑛𝑛�𝑡𝑡 , �̂�𝜅𝑡𝑡−1) by  

 𝑉𝑉𝑡𝑡(𝑚𝑚�𝑡𝑡,𝑛𝑛�𝑡𝑡 , �̂�𝜅𝑡𝑡−1) = 𝑢𝑢(�̂�𝑐𝑡𝑡) + 𝛽𝛽𝑤𝑤𝑡𝑡(𝑎𝑎�𝑡𝑡, 𝑏𝑏�𝑡𝑡, �̂�𝜅𝑡𝑡−1). 
 

Case 2. Segments with 𝑑𝑑𝑡𝑡 constrained only: 𝑎𝑎𝑡𝑡 > 0 and 𝑑𝑑𝑡𝑡 = �̂�𝑑 ∈ {0,𝑌𝑌𝑡𝑡 − ℎ𝑗𝑗 ,𝑌𝑌𝑡𝑡 −
ℎ𝑗𝑗−1, … ,𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛�+1,𝑌𝑌𝑡𝑡 − ℎ𝑛𝑛�} 

Given a point (𝑎𝑎�𝑡𝑡, 𝑏𝑏�𝑡𝑡, �̃�𝜅𝑡𝑡−1) on the common grid 𝒢𝒢𝑡𝑡
𝑎𝑎,𝑏𝑏,𝜅𝜅, we can calculate corresponding 

optimal consumption choice �̃�𝑐𝑡𝑡 using the FOCs as follows:  

 �̃�𝑐𝑡𝑡 = �𝛽𝛽𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎�𝑡𝑡,𝑏𝑏�𝑡𝑡,𝑘𝑘�𝑡𝑡−1)�
−1𝛾𝛾 

Using the budget constraints, we can invert the values of the corresponding endogenous pre-
decision states:  

 𝑚𝑚�𝑡𝑡 = �̃�𝑐𝑡𝑡 + �̂�𝑑 − 𝑔𝑔(�̂�𝑑), 
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 𝑛𝑛�𝑡𝑡 = 𝑏𝑏�𝑡𝑡 − �̂�𝑑. 

The value function 𝑉𝑉𝑡𝑡(𝑚𝑚�𝑡𝑡,𝑛𝑛�𝑡𝑡, �̃�𝜅𝑡𝑡−1) can also be evaluated. Therefore, for all points in the 
common grid over post-decision states 𝒢𝒢𝑡𝑡

𝑎𝑎,𝑏𝑏,𝜅𝜅, we have node sets containing optimal choices, 
pre-decision states, and evaluated value functions. Note that the pre-decision states in the 
node sets are endogenously calculated rather than exogenously given and thus they form an 
irregular endogenous grid. In order to compute the value function for the regular common grid 
𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅, we follow the steps proposed in Druedahl and Jørgensen (2017):   

 

1. Local triangulation:   

a) Compute a set of simplexes such that no data points on 𝒢𝒢𝑡𝑡
𝑎𝑎,𝑏𝑏,𝜅𝜅 are contained in 

any circumspheres of the simplexes. The set of simplexes forms the Delaunay 
triangulation.  

b) Determine the corresponding simplexes mapped into (𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡, 𝜅𝜅𝑡𝑡−1) space.  

c) Construct the simplexes’ bounding boxes in (𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) space.  

2. Interpolation to common pre-decision-state grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅 and first upper envelope. For 

each bounding box, do the following:   

a) Find the nodes in the common pre-decision-state grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅 inside the bounding 

box.  
b) Find candidate choices for each state-variable node (𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) ∈ 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅 
inside the bounding box, using barycentric interpolation. To limit the use of 
extrapolation, we do not consider points with any barycentric weights less than 
−0.125.  

c) Calculate the implied value function of these interpolated choices.  
d) Update the optimal choice if no previous set of choices have been found yielding a 

higher value-of-choice.  

The above steps evaluate the value function for the nodes in the common grid 𝒢𝒢𝑡𝑡
𝑚𝑚,𝑛𝑛,𝜅𝜅. 

Case 3. Segments with only 𝑐𝑐𝑡𝑡 constrained: 𝑎𝑎𝑡𝑡 = 0 and 𝑑𝑑𝑡𝑡 ∈ (𝑙𝑙𝑑𝑑,𝑢𝑢𝑑𝑑) 

The way we segment 𝑑𝑑𝑡𝑡 ensures that 𝑔𝑔(𝑑𝑑𝑡𝑡) is differentiable for 𝑑𝑑𝑡𝑡 ∈ (𝑙𝑙𝑑𝑑,𝑢𝑢𝑑𝑑) and 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡) 
is a constant. Let  

 𝑣𝑣�𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1) = 𝑢𝑢(𝑐𝑐𝑡𝑡) + 𝛽𝛽𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡−1). 

Since 𝑎𝑎𝑡𝑡 = 0, we have  

 𝑐𝑐𝑡𝑡 = 𝑚𝑚𝑡𝑡 − 𝑑𝑑𝑡𝑡 + 𝑔𝑔(𝑑𝑑𝑡𝑡) 

We obtain the first-order derivative for 𝑑𝑑𝑡𝑡 as follows:  

 𝜕𝜕𝑣𝑣�𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
𝜕𝜕𝑑𝑑𝑡𝑡

= 𝜕𝜕𝜕𝜕(𝑐𝑐𝑡𝑡)
𝜕𝜕𝑐𝑐𝑡𝑡

𝜕𝜕𝑐𝑐𝑡𝑡
𝜕𝜕𝑑𝑑𝑡𝑡

+ 𝛽𝛽 �𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝑘𝑘𝑡𝑡)
𝜕𝜕𝑎𝑎𝑡𝑡
𝑑𝑑𝑡𝑡

+ 𝑤𝑤𝑡𝑡,𝑏𝑏(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
𝜕𝜕𝑏𝑏𝑡𝑡
𝑑𝑑𝑡𝑡
� 

 = 𝑐𝑐𝑡𝑡
−𝛾𝛾[−1 + 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡)] + 𝛽𝛽𝑤𝑤𝑡𝑡,𝑏𝑏(0,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡) 
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Note that since 𝑎𝑎𝑡𝑡 = 0, we have 𝜕𝜕𝑎𝑎𝑡𝑡
𝑑𝑑𝑡𝑡

= 0. Fixing 𝑏𝑏𝑡𝑡 and 𝑐𝑐𝑡𝑡, the above derivative is a constant 

since 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡) is a constant for 𝑑𝑑𝑡𝑡 ∈ (𝑙𝑙𝑑𝑑,𝑢𝑢𝑑𝑑). Therefore, there is no FOC for 𝑑𝑑𝑡𝑡. In addition, 
𝑣𝑣�𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡) approaches its maximum when 𝑑𝑑𝑡𝑡 approaches either 𝑙𝑙𝑏𝑏 or 𝑢𝑢𝑏𝑏. Since 
𝑣𝑣�𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡) is defined and continuous at 𝑙𝑙𝑑𝑑 and 𝑢𝑢𝑑𝑑, the value obtainable in this case is 
always smaller than those in Case 1. Therefore, this case should be discarded. 

Case 4. Segments with no constraints: 𝑎𝑎𝑡𝑡 > 0 and 𝑑𝑑𝑡𝑡 ∈ (𝑙𝑙𝑑𝑑,𝑢𝑢𝑑𝑑) 

Given a node (𝑎𝑎�𝑡𝑡, 𝑏𝑏�𝑡𝑡, �̃�𝜅𝑡𝑡−1) on the common grid 𝒢𝒢𝑡𝑡
𝑎𝑎,𝑏𝑏,𝜅𝜅, we use the FOCs to determine the 

candidate optimal choices:  

 �̃�𝑐𝑡𝑡 = �𝛽𝛽𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎�𝑡𝑡,𝑏𝑏�𝑡𝑡,𝑘𝑘�𝑡𝑡)�
−1𝛾𝛾 

However, there is no FOC for 𝑑𝑑𝑡𝑡. Let us revisit the first-order derivative for 𝑑𝑑𝑡𝑡 when 𝑐𝑐𝑡𝑡 is 
unconstrained:  

 𝜕𝜕𝑣𝑣�(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝜅𝜅𝑡𝑡)
𝜕𝜕𝑑𝑑𝑡𝑡

= 𝛽𝛽 �𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝜅𝜅𝑡𝑡−1)
𝜕𝜕𝑎𝑎𝑡𝑡

𝜕𝜕𝑎𝑎𝑡𝑡
𝜕𝜕𝑑𝑑𝑡𝑡

+ 𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝜅𝜅𝑡𝑡−1)
𝜕𝜕𝑏𝑏𝑡𝑡

𝜕𝜕𝑏𝑏𝑡𝑡
𝜕𝜕𝑑𝑑𝑡𝑡
� 

 = 𝛽𝛽�𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡)(−1 + 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡)) + 𝑤𝑤𝑡𝑡,𝑏𝑏(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝜅𝜅𝑡𝑡)� 

Since 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡) is a constant, the first order derivative is also a constant. The value function is in 
fact a linear function of 𝑑𝑑𝑡𝑡 in this segment given the exogenous post-decision grid point 
(𝑎𝑎�𝑡𝑡, 𝑏𝑏�𝑡𝑡, �̃�𝜅𝑡𝑡−1) and approaches its maximum when 𝑑𝑑𝑡𝑡 approaches either 𝑙𝑙𝑏𝑏 or 𝑢𝑢𝑏𝑏. Since the 
value function is defined and continuous at 𝑙𝑙𝑏𝑏 and 𝑢𝑢𝑏𝑏, the maximum value function 
obtainable in this case is always lower than those obtained in Case 2. Therefore, this case 
should also be discarded. 

C.3  Second upper envelope over segments 

Combining the four cases discussed above, the segments we consider should always have 
constrained 𝑑𝑑𝑡𝑡. Therefore, the total number of segments is 2(𝑖𝑖 − 𝑛𝑛� + 3). For each segment, 
we evaluated 𝑉𝑉𝑡𝑡(𝑚𝑚𝑡𝑡,𝑛𝑛𝑡𝑡 , 𝜅𝜅𝑡𝑡−1) for all the nodes on the common grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅. As a final step, we 
apply another envelope over all the segments. For each node on the common grid 𝒢𝒢𝑡𝑡

𝑚𝑚,𝑛𝑛,𝜅𝜅, the 
optimal choice is chosen as the choice from the segment with the highest value-of-choice. 
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Appendix D  Deriving first order conditions 
Assume that the continuation value function is differentiable with respect to 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡. The 
optimal choices should satisfy the FOCs:  

 𝑐𝑐𝑡𝑡
−𝛾𝛾 + 𝛽𝛽 𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝜅𝜅𝑡𝑡−1)

𝜕𝜕𝑎𝑎𝑡𝑡

𝜕𝜕𝑎𝑎𝑡𝑡
𝜕𝜕𝑐𝑐𝑡𝑡

= 0, 

 𝛽𝛽 �𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝜅𝜅𝑡𝑡−1)
𝜕𝜕𝑎𝑎𝑡𝑡

𝜕𝜕𝑎𝑎𝑡𝑡
𝜕𝜕𝑑𝑑𝑡𝑡

+ 𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝜅𝜅𝑡𝑡−1)
𝜕𝜕𝑏𝑏𝑡𝑡

𝜕𝜕𝑏𝑏𝑡𝑡
𝜕𝜕𝑑𝑑𝑡𝑡
� = 0. 

 Since  

 𝑎𝑎𝑡𝑡 = 𝑚𝑚𝑡𝑡 − 𝑐𝑐𝑡𝑡 − 𝑑𝑑𝑡𝑡 + 𝑔𝑔(𝑑𝑑𝑡𝑡), 

 𝑏𝑏𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝑑𝑑𝑡𝑡, 

 we have  

 𝜕𝜕𝑎𝑎𝑡𝑡
𝜕𝜕𝑐𝑐𝑡𝑡

= −1 

 𝜕𝜕𝑎𝑎𝑡𝑡
𝜕𝜕𝑑𝑑𝑡𝑡

= −1 + 𝜕𝜕𝑔𝑔(𝑑𝑑𝑡𝑡)
𝜕𝜕𝑑𝑑𝑡𝑡

 

 𝜕𝜕𝑏𝑏𝑡𝑡
𝜕𝜕𝑑𝑑𝑡𝑡

= 1. 

Given an exogenous grid point (𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡), the optimal choice can be found by solving the two 
equations. Assume that the value function is differentiable with respect to 𝑐𝑐𝑡𝑡 and 𝑑𝑑𝑡𝑡. Using 
the FOCs, the optimal choices can be written as follows:  

 �̂�𝑐𝑡𝑡 = �𝛽𝛽𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)�
−1𝛾𝛾, 

 �̂�𝑑𝑡𝑡 = 𝑔𝑔𝑑𝑑−1 �
𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)−𝑤𝑤𝑡𝑡,𝑏𝑏(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)

𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
�, 

 where  

 𝑤𝑤𝑡𝑡,𝑎𝑎(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡) = 𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
𝜕𝜕𝑎𝑎𝑡𝑡

, 

 𝑤𝑤𝑡𝑡,𝑏𝑏(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡) = 𝜕𝜕𝑤𝑤𝑡𝑡(𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡,𝑘𝑘𝑡𝑡)
𝜕𝜕𝑏𝑏𝑡𝑡

, 

 𝑔𝑔𝑑𝑑(𝑑𝑑𝑡𝑡) = 𝜕𝜕𝑔𝑔(𝑑𝑑𝑡𝑡)
𝜕𝜕𝑑𝑑𝑡𝑡

, 

and 𝑔𝑔𝑑𝑑−1(. ) is the inverse function of 𝑔𝑔𝑑𝑑(. ). Assume that the first-order derivatives are 
convex, the FOCs are both necessary and sufficient. Therefore, �̂�𝑐𝑡𝑡 and �̂�𝑑𝑡𝑡 must be the unique 
optimal choice for the exogenous grid point (𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡, 𝑘𝑘𝑡𝑡).  
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