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Abstract 
The fee structure of variable annuities is important for both insurers and policyholders. A well-
designed fee structure may help reduce the risk exposure of the insurer and simultaneously 
increase the welfare of the policyholder. In light of this, we hereby propose a variable annuity with 
a novel high-water mark fee structure, and examine its implications for both the insurer and the 
policyholder.  

From the insurer’s perspective, we first determine the fair insurance fees within the conventional 
risk-neutral pricing framework and later discuss the insurer’s risk management implications.  

From the policyholder’s perspective, we consider three types of policyholders with a mean-
variance preference, namely a naive policyholder, a naive policyholder with exogenous shocks, 
and a sophisticated policyholder. We first evaluate these policyholders’ welfare in the context of 
the variable annuity with the high-water mark fee structure. Later, a comparative analysis of 
policyholders’ welfare under a constant and a state-dependent fee structure is also included. We 
find that the high-water mark fee structure can generally increase the policyholder’s welfare in 
comparison to the other two fee structures. Specifically, the high-water mark fee structure is more 
favourable for policyholders who are more risk-averse, more likely to experience exogenous 
shocks, and have a shorter contract length. Also, we observe that the high-water mark fee 
structure is more robust in policyholders’ welfare across a range of risk preferences and is 
therefore more marketable than the other two fee structures. 

1 Introduction 
Variable annuities (VAs) are equity-linked insurance products issued by insurance companies. 
Their flexible investment options, favourable tax-deferral treatment, and stable long-term 
guarantees have made them one of the most prevalent investment vehicles over the last two 
decades. At the inception of a VA contract, a policyholder (PH) pays a lump sum initial premium to 
an insurer, who invests the sum into a basket of preassigned mutual funds (often referred to as 
the policy fund) by setting up an investment account to track the performance of the policy fund. 
Payouts under the VA policy are often subject to some minimum guarantees which kick in when 
the performance of the policy fund is poor. To fund these guarantees, the insurer periodically 
depletes the investment account by charging insurance fees. The PH is also given the option to 
surrender the VA contract before maturity subject to some predetermined surrender penalty.  

In light of the above, a standard VA policy with minimum guaranteed payouts offers the PH 
protection against bearish market conditions while allowing the PH to financially gain from bullish 
market movements. On the other hand, the insurer has exposure to a variety of risks, including 
financial market risk, mortality risk, PH behaviour risk (e.g., surrender risk), and others. 

Nevertheless, even with the seemingly great advantages to PHs, the VA market has experienced 
dwindling sales over the past half-decade. Many reasons have been evoked to explain this trend, 
most notably the high insurance fees associated with VA products (see Bernard and Moenig, 
2018). The sluggish VA market highlights the importance of the fee structure design in the 
marketability of VAs. On the one hand, different fee structures induce different incentives for PHs 
whose preferences and objectives are somewhat unique to the individual level. On the other 
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hand, by affecting PHs’ behaviour, each fee structure has its own unique implications on an 
insurer’s risk management activities. A preferable fee structure is one balancing the interests and 
preferences of both insurers and PHs. 

For VA products, the most prevalent fee structure is the so-called constant fee structure, which 
termly levies a fixed percentage of the investment account as insurance fees. As highlighted by 
many researchers, this time- and state-invariant fee structure is known to incentivize PHs to 
surrender the VA contract when the investment account grows in value as PHs pay a high 
insurance fee for guarantees with negligible values. In view of this problem, a few research papers 
have looked into insightful solutions to design more favourable fee structures. For instance, 
Bernard and Moenig (2018) propose a time-dependent fee structure where the insurance fee is 
reduced after a certain time threshold. By implicitly discouraging PHs’ surrender behaviour, the 
time-dependent fee structure is shown to reduce insurance fees while keeping the VA contract 
profitable to insurers. Bernard et al. (2016) and Cui et al. (2017) consider a VIX-linked fee structure 
and show its appeal to help re-align the collection of insurance fees with the insurer’s liability, 
which might in return help reduce the PH’s surrender incentive. Most relevant to the present 
work, Bernard et al. (2014) introduce a state-dependent fee structure that charges a constant fee 
only when the value of the investment account is below a certain threshold. It is later shown by 
MacKay et al. (2017) that the state-dependent fee structure can make the surrender behaviour 
completely sub-optimal by imposing a certain marketable surrender penalty. 

Although most of the aforementioned papers show that the newly proposed fee structures are 
helpful to better align the insurer’s liability with the collection of insurance fees (consequentially 
beneficial for the insurer in reducing the surrender risk), little is known about the impact these fee 
structures may have on PHs. The main drawback of the constant fee structure is that the fixed 
percentage fee fails to adjust to PHs’ incentives under various market conditions and therefore 
undermines PHs’ welfare, which eventually erodes the marketability of VAs. However, by mainly 
focusing on the insurer’s risk management implications, the analysis fails to comprehensively 
consider the interests of both parties in the financial transaction. 

In light of the above, the goal of this paper is to propose a VA with a novel high-water mark 
(HWM) fee structure and examine its merits for both the PH and the insurer. This HWM fee 
structure is assumed to have a blend of features from a state-dependent constant fee and a pure 
HWM fee. More specifically, in addition to a state-dependent constant fee, the HWM fee structure 
is designed to charge a HWM fee when the investment account reaches new record highs above a 
certain threshold. The HWM fee structure will be shown to reduce the variance of the VA payouts 
by stabilizing the investment account, a desirable feature for a risk-averse PH. This is attributed to 
the inherent design feature of the HWM fee structure of charging a reduced constant fee when 
the investment account value is low while exercising some restraints on the growth rate of the 
investment account when the financial market is performing well. Through the specification of the 
HWM fee, the resulting VA will be shown to display varying levels of stability. However, this will 
come at the expense of aggravating the surrender risk when the investment account becomes 
large in comparison to the state-dependent fee structure. 
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Note that the HWM fee is frequently applied in the hedge fund industry where a Two-and-Twenty 
fee scheme1 is widely accepted. The impact of the HWM fee on investors and fund managers in 
hedge funds has been well documented; see, for example, Guasoni and Obłój (2016) and 
references therein. However, we would like to point out that the proposed application of a HWM 
fee in VAs is fundamentally different to its use in hedge funds. Indeed, in hedge funds the HWM 
fee is used to compensate managers for their skills, while in VAs it is utilized to fund the 
embedded guarantees. 

As for the analysis, we propose to adopt the risk-neutral pricing approach to determine the fair 
insurance fees2 for the VA with the HWM fee structure. This is the conventional approach to price 
VAs in the literature; see, for example, Bauer et al. (2008), Dai et al. (2008), Huang and Kwok 
(2016), Milevsky and Salisbury (2001, 2006), Milevsky and Salisbury (2002), and references 
therein. 

Within the risk-neutral pricing framework, it is opportune for PHs to maximize the expected 
present value (EPV) of future cash payouts since each agent is able to replicate every possible cash 
payout in a complete market with no friction. In what follows, we refer to this optimal strategy of 
PHs as the risk-neutral-pricing strategy. Assuming that PHs follow the risk-neutral-pricing strategy 
is important for pricing, although this strategy might deviate from empirical PH behaviour. The 
reason is that this strategy corresponds to the worst-case liabilities (also referred to as the 
hedging cost in Forsyth and Vetzal, 2014) for insurers. In other words, by assuming this strategy 
when pricing, insurers can hedge every possible cash outflow with no risk. 

From the PH’s perspective, we evaluate their welfare in holding the VA assuming a mean-variance 
(MV) risk preference. We carry out a comparative analysis by also considering the PH’s welfare 
under the constant and state-dependent fee structures. In a complete and frictionless market, the 
risk-neutral-pricing strategy should fully capture PHs’ behaviour (see Bauer et al., 2017, for 
details). However, the life insurance market is neither complete nor frictionless, and one can find 
significant discordance between empirical PH behaviour and the risk-neutral-pricing behaviour 
(see, for example, Bauer et al., 2017; Azimzadeh et al., 2014; and Moenig and Bauer, 2015). 
Hence, it is necessary to evaluate PHs’ welfare assuming a set of preferences that is different than 
the risk-neutral-pricing strategy. The MV analysis of Markowitz (1952) lays the foundation of 
modern portfolio theory by formalizing stating the investor’s trade-off between the risk and return 
of a strategy.  

In light of this, PHs should take the variance of VAs’ payouts into account since a low variance 
indicates stable cash payouts, which is a virtue for a long-term investment vehicle like VAs. To 
account for a diversity of PHs’ behaviour, we consider three types of PHs, namely a naive PH, a 
naive PH with exogenous shocks, and a sophisticated PH. The naive PH corresponds to the PH who 
has inadequate financial literacy or market knowledge and hence dismisses the surrender options 
embedded in the VA, the naive PH with exogenous shocks corresponds to the PH who has 
exogenous shocks in her life and surrenders the VA contract sub-optimally at an independent 
random time, and the sophisticated PH corresponds to the PH with adequate financial literacy and 

 
1 A 2% constant fee for the asset under management and 20% HWM fee for the newly created HWM. 
2 The fair fee is also called the break-even fee. It is the fee to equate the expected present value of PHs’ future cash payouts to their 
initial premiums. 
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market knowledge who surrenders the VA contract optimally. For the first two types of PHs, we 
investigate their welfare by evaluating the mean and variance of the VA payout. For the 
sophisticated PH, we examine the welfare by tackling the time inconsistency stemming from an 
MV optimal stopping problem. 

By evaluating the welfare of the aforementioned three types of PHs with an MV preference, it will 
be shown that the HWM fee structure can in general improve PHs’ welfare in comparison to the 
constant and state-dependent fee structures. Specifically, the HWM fee structure is more 
favourable for PHs who are more risk-averse, more likely to experience exogenous shocks over the 
course of the policy, and have a shorter contract length. Moreover, the HWM fee structure is 
more robust in PHs’ welfare across a range of risk preferences and is therefore more marketable 
than the constant and state-dependent fee structures. 

The main contributions of this paper are summarized in the following four points: 

• We propose a VA with a HWM fee structure and show its merits to stabilize the investment 
account and reduce the variance of the VA payout. 

• The analysis of a VA policy with a HWM fee structure is completed by considering the 
interest of both parties (PHs and insurers) in the transaction. The vast majority of the VA 
literature focuses on pricing (and hedging) of a certain VA product. In this paper, we 
examine a variety of PHs’ welfare among a set of VAs with the HWM fee structure (as in 
the spirit of Steinorth and Mitchell, 2015). 

• To study the sophisticated PH’s welfare, we formally derive a system of extended 
Hamilton–Jacobi–Bellman (EHJB) equations corresponding to an MV optimal stopping 
problem with two state variables over a random horizon. The intricacy stemming from the 
high dimension and the random horizon is overcome. Note that there are numerous 
papers addressing stochastic control problems under the MV criterion following the 
seminal work by Basak and Chabakauri (2010), Björk and Murgoci (2010), and Zhou and Li 
(2000). However, the literature on MV optimal stopping problems is rather scarce. The 
present work can help fill this void. 

• Note that solving a system of EHJB equations corresponding to an MV optimal control 
problem can, at times, be reduced to solving a system of ordinary differential equations 
(ODEs) given the semi-explicit form of the value function. However, for an MV optimal 
stopping problem with a finite horizon, one can only resort to numerical solutions due to 
the absence of an explicit solution for the value function. In light of this, we develop an 
algorithm based on Wang and Forsyth (2011) to solve for the system of EHJB equations. 
We go a step further than Wang and Forsyth (2011) by establishing the connection 
between the system of EHJB equations and the proposed algorithm. 
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This paper is organized as follows. Section 2 formally introduces the VA with a HWM fee structure 
along with its risk-neutral pricing model. Section 3 presents numerical examples of the fair 
insurance fees and the corresponding surrender regions for a risk-neutral-pricing PH under the 
HWM fee structure. For comparative purposes, we also present the corresponding results for the 
constant and state-dependent fee structures. Sections 4, 5, and 6 evaluate the welfare of a naive 
PH, a naive PH with exogenous shocks, and a sophisticated PH, respectively, under the HWM fee 
structure. Once again, a comparative analysis is conducted to investigate PHs’ welfare under the 
constant and state-dependent fee structures. Section 7 concludes. Proofs and some technical 
results are in the appendices. 
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2 The Risk-Neutral Pricing Model 
In this section, we give a detailed description of the VA policy under consideration and formulate 
its risk-neutral pricing model within a continuous-time stochastic optimal stopping framework. 

2.1 The Contract 
We consider a VA policy with maturity T > 0. At inception of the contract, the PH pays an initial 
premium P, which is invested in a predetermined basket of funds, namely the policy fund. The 
insurer sets up an investment account F to track the performance of the underlying policy fund 
with F0 = P. The VA policy is assumed to have the following embedded guarantees: 

• guaranteed minimum death benefit (GMDB): upon the PH’s death at time t ∈ (0,T), the 
policy stipulates that the death benefit is the greater of the investment account Ft and the 
guaranteed amount Gt. 

• guaranteed minimum maturity benefit (GMMB): at the policy maturity T, a payment 
equal to the greater of the investment account FT and the guaranteed amount GT is made 
to the PH. 

In what follows, the guaranteed amount is assumed to roll up continuously at a rate g ≥ 0 before 
the contract matures; i.e., Gt = G0egt for t ∈ (0,T]. Note that the roll-up rate g should be no greater 
than the risk-free rate r to exclude arbitrage opportunities. 

Meanwhile, the PH is allowed to surrender the VA contract at any time before maturity. If this 
surrender right is exercised, there are no guarantees applicable and a penalty κ is levied on the 
balance of the investment account. Thus, upon surrender, the PH is to receive (1−κt)Ft at t ∈ [0,T). 
To disincentivize early-surrender behaviour, the surrender penalty κt is usually assumed to 
decrease with time. 

2.2 Evolution of the Investment Account 
Consider a probability space (Ω,F,Q) with a filtration {Ft}0≤t≤T  satisfying the usual conditions, where 
Q is an equivalent martingale measure. Under the Q measure, we assume that the policy fund 
value process S follows a geometric Brownian motion with dynamics 

, 

where r > 0, σ > 0 and {WQ}t≥0 is a Brownian motion under Q. Under the HWM fee structure, the 
insurance fee has two components, namely a continuously charged constant fee with a rate c ≥ 0 
when the investment account is lower than a certain threshold θ and a HWM fee with a rate α ≥ 0 
charged when the investment account reaches new record highs above the threshold θ.3 Under Q, 
the dynamics of the investment account under the HWM fee structure is assumed to be 

 dFt = (r − c1{Ft≤θ})Ftdt + σFtdWtQ − α1{Ft≥θ}dMt, (1) 

  

 
3 Note that the HWM fee structure can be generalized to the case with two thresholds; for example, θ1 and θ2. Only 
the constant fee c is effective when the investment account is lower than θ1 and only the HWM fee is effective when 
the investment account reaches new record highs above θ2. 
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where 

Mt = sup Fs 

0≤s≤t 

denotes the HWM of the investment account at time t. For comparative purposes, we also 
introduce the dynamics of the investment account under two other fee structures for VAs: 

• the constant fee structure: 

, and 

• the state-dependent fee structure (Bernard et al., 2014): 

. 

Note that the same parameter c is used to represent the constant fee in all three fee structures. 
However, under the risk-neutral pricing model, the parameter c in the HWM fee structure will be 
different from the ones in the constant or the state-dependent fee structure. We use the same c 
in all three fee structures for notational convenience. 

A graphical illustration of the mechanism of the three fee structures is presented in Figure 1. Note 
that the HWM fee structure reduces to the state-dependent fee structure if α = 0. Also, the 
constant fee structure can be viewed as a limiting case of the HWM fee structure when θ → ∞. 
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Figure 1: A Graphical Illustration of Fee Mechanism for the Constant, the State-Dependent and 
the HWM Fee Structures 

c 

 
0 the constant fee structure Ft c 0 

 
 0 θ Ft 

the state-dependent fee structure 

 c α 

 
 0 θ Ft 

the HWM fee structure 

2.3 The Mortality Model 
From the inclusion of the GMDB, the insurer is exposed to mortality risk. Trading only stocks and 
bonds cannot fully replicate mortality-related insurance claims since mortality-based assets are 
scarce in the financial market (see Møller, 1998, for details). This gives rise to market 
incompleteness. To deal with this, it is common in the actuarial literature to make the following 
two assumptions: financial market risk and mortality risk are independent and the insurer is risk-
neutral with respect to mortality risk; see, for instance, Aase and Persson (1994) and Bauer et al. 
(2008). In this paper, we abide by this convention for the VA pricing. Under the two assumptions, 
the risk-neutral measure of the combined financial and insurance markets is the product measure 
of Q and the physical measure of the mortality risk. With a slight abuse of notation, we henceforth 
denote this product measure by Q. 

For convenience, we denote by ρx the future lifetime of an x-year-old PH with survival function 

, for s ≥ 0, 

where λx+u is the PH’s force of mortality at age x + u. In what follows, we omit the subscription x 
of ρx for brevity. 
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2.4 Pricing of the VA Policy 

For the pricing of the VA policy, we make use of its resemblance to financial derivatives (e.g., put 
options) and apply the risk-neutral pricing approach. More specifically, within the risk-neutral 
pricing framework, both the insurer and the PH are able to replicate every possible VA cash 
payout. Furthermore, the PH’s behaviour is also considered because of the embedded surrender 
option in the policy. Within the risk-neutral pricing framework, it is opportune for the PH to 
maximize the EPV of the future cash payouts, a strategy known as the risk-neutral-pricing strategy. 
The reason is that cash payouts generated by other PH preferences can also be replicated and will 
result in a lower value than the one corresponding to the risk-neutral-pricing strategy. In light of 
the above, we formulate the pricing of the VA policy within a continuous-time stochastic optimal 
stopping framework, and the PH is assumed to surrender the contract optimally to maximize the 
EPV of the future cash payouts. 

Denote the set of all stopping times τ valued in [t,T] by T[t,T]. For the HWM fee structure, the VA’s 
cash payouts are path-dependent and hence the state variable m defined as 

Mt = sup Fs = m, 

0≤s≤t 

is further added to preserve the Markov property. Let O¯ be the closure of the set
 F < m} and consider the value function V of the VA policy at time t over the 

domain (t,F,m) ∈ [0,T]×O¯: 

 
where 

 
corresponds to the surrender value or the maturity payout of the VA policy. Note that in Eq. (2), 
(a) contains the surrender and maturity payouts while (b) contains the payout triggered by the 
PH’s death. Let 

Ct = {(F,m) ∈ O¯ : V (t,F,m) > ψ(t,F)} 

be the continuation region and 

St = {(F,m) ∈ O¯ : V (t,F,m) = ψ(t,F)} 

be the stopping region. We also define 
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where Vt, VF, and VFF are the first-order derivative of V with respect to t, F, and second-order 
derivative with respect to F, respectively. By the dynamic programming principle, the value 
function V on Ct satisfies the partial differential equation (PDE) 

 Vt + LV + λx+t max(F,G) = 0, (3) 

with boundary conditions 

 
The first boundary condition in Eq. (4) corresponds to the maturity payout of the VA policy. The 
second boundary condition corresponds to the case that the investment account is ruined; i.e., the 
degeneration of Eq. (3) when F = 0. The third boundary condition is intuitively based on the change 
of the value of the VA policy when the investment account creates a new HWM. A similar 
condition can be found in Goetzmann et al. (2003), Lan et al. (2013), and Panageas and 
Westerfield (2009). The last boundary condition holds as it is optimal for the PH to surrender the 
contract for large investment account values when the HWM fee α is positive (α > 0).4 A 
verification theorem for the pricing PDE (3) with boundary conditions (4) is in Theorem 3 in 
Appendix A.1. 

Note that the state variables F and m in the PDE (3) are such that F ≤ m, which is not desirable to 
numerically solve the PDE (3). To disentangle the dependence between these two variables, we 
consider the following change of variable: 

 
where z ∈ [0,1]. Evidently, the state variable z represents a drawdown5 measure of the investment 
account with respect to its HWM.   

 
4 Note that the HWM fee structure degenerates to the state-dependent fee structure when the HWM fee α becomes 
zero. In this case, it is optimal for the PH to hold the VA contract for large investment account values as suggested in 

MacKay et al. (2017). Therefore, the last boundary condition in Eq. (4) becomes lim  
5 Drawdown is a kind of risk metric measuring the magnitude of the decline in portfolio value relative to its historic 
HWM. 
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Define a function 

J(t,z,u) = V (t,F,m) 

and derive that 

, 

it is not difficult to see that the PDE (3) with boundary conditions (4) becomes 

 Jt + LJ + λx+t max(mz,G) = 0, (5) 

with boundary conditions 

 
 

where . We propose to numerically solve the above 
PDE (5) with boundary conditions (6) (rather than Eq. (3) with boundary conditions (4)). 
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3 Fair Fees and Optimal Surrender Regions 
In this section, we conduct several numerical experiments of the VA with the HWM fee structure 
to determine the fair insurance fees and the corresponding optimal surrender regions for a risk-
neutral-pricing PH. We carry a comparative analysis of identical VAs, but with the other two fee 
structures presented in Section 2.2. We later compare their optimal surrender regions to draw 
implications of a risk management nature for the insurer. 

3.1 The Fair Fees 
For a VA policy, a fair fee is one that makes the EPV of the cash inflows and outflows perfectly 
balanced. Specifically, we present the following definition of the fair insurance fees for the VA with 
a HWM fee structure. 

Definition 1. For a VA with the HWM fee structure, (c,α) is called a pair of fair fees if it satisfies 

V (0,F0,F0;c,α) = F0. 

For illustration purposes, we consider the same Makeham mortality model as in MacKay et al. 
(2017); i.e., 

λx = A + Bcx, for x > 0, 

with A = 0.0001, B = 0.00035, and c = 1.075. The other parameter inputs are as specified in Table 1. 
Note that we assess the sensitivity of the fair fees with respect to different contract lengths T and 
different levels of market volatility σ. The threshold θ is set at 150 in the following numerical 
examples, but other values could have as easily been considered. There are various options to 
choose a surrender penalty function (other than the one stated in Table 1). Contrary to MacKay et 
al. (2017), we do not look for the minimal surrender penalty that makes surrender behaviour sub-
optimal. We adopt the same surrender penalty for all three fee structures so that the fair fees and 
surrender regions under these fee structures can be fairly compared. 
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Table 1: Parameter Inputs 

Description Parameter Value 

Contract length T 10, 25 

Interest rate r 0.03 

Roll-up rate g 0 

Initial premium F0  

Surrender penalty 
κt 

0.  

The PH’s age x 60 

Volatility σ 0.15, 0.2, 0.25 

Threshold for the constant and HWM 
fee θ 150 

 

Table 2: Fair Fee under Different Fee Structures 

 T = 10 T = 25 

Fee structure σ = 0.15 σ = 0.2 σ = 0.25 σ = 0.15 σ = 0.2 σ = 0.25 

Constant c 0.0163 0.0332 0.0550 0.0068 0.0158 0.0278 

 (0,0.0170) (0,0.0338) 

 

(0,0.0555) 

 

(0,0.0087) 

 

(0,0.0182) (0,0.0307) 

 

HWM (a; c) (0.05,0.0164) (0.05,0.0333) (0.05,0.0550) (0.05,0.0069) (0.05,0.0157) (0.05,0.0277) 

 (0.2,0.0162) (0.2,0.0331) (0.2,0.0547) (0.2,0.0061) (0.2,0.0148) (0.2,0.0263) 

 (0.5,0.0161) (0.5,0.0329) (0.5,0.0543) (0.5,0.0056) (0.5,0.0139) (0.5,0.0247) 
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A list of fair fees under different fee structures is summarized in Table 2. In what follows, we refer 
to the case of a HWM fee α = 0 to the state-dependent fee structure. In Table 2, we consider four 
levels of HWM fee α, namely 0, 0.05, 0.2, and 0.5, and derive the corresponding constant fee c. As 
expected, we first observe that, for a given maturity T, the constant fee c decreases as the HWM 
fee α increases. This is immediate from Definition 1. Now focusing on the time horizon effect, we 
note that, for a given HWM fee α, the fair constant fee c decreases from the case T = 10 to T = 25. 
This is intuitive as the value of these guarantees tends to decrease with the time horizon. Lastly, 
for the same HWM fee α, higher volatility corresponds to a higher constant fee c (all else being 
equal). This confirms our intuition that more fees are needed to finance the guarantees in more 
volatile market conditions. 

Figure 2: Optimal Surrender Regions under Different Fee Structures 

We present the optimal surrender regions of the risk-neutral-pricing PH under the constant, state-
dependent and HWM fee structures at time t = 12. 
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3.2 Optimal Surrender Regions 
In this subsection, we further analyze the surrender behaviour of the risk-neutral-pricing PH by 
depicting the corresponding optimal surrender regions. For comparative purposes, we also 
present the surrender regions for the constant and state-dependent fee structures. 

In Figure 2, we present the optimal surrender regions of the risk-neutral-pricing PH at time t = 12 
under different fee structures for the example of Section 3.1 with contract length T = 25 and 
market volatility σ = 0.15. In this figure, “S” corresponds to the surrender region and “C” 
corresponds to the continuation region. The upper left panel of Figure 2 corresponds to the 
optimal surrender region of the constant fee structure. Note that the surrender region appears in 
the upper right corner of the panel, which corresponds to large values of the investment account. 
This is consistent with the earlier observation that PHs are incentivized to surrender the VA when 
the investment account becomes large as the value of the guarantees is small in comparison to the 
EPV of the future insurance fees. The upper right panel of Figure 2 is the optimal surrender region 
under the state-dependent fee structure (α = 0), which corresponds to a banded-shape area below 
the threshold θ (consistent with MacKay et al., 2017).  

When the investment account is in the banded-shape region, it is optimal for the PH to surrender 
the contract since the insurance fee is too expensive for the value of the embedded guarantees. 
Above the threshold θ, the PH has no incentive to surrender the contract since no insurance fee is 
paid. The lower two panels of Figure 2 present the surrender regions of the HWM fee structure 
with HWM fee α = 0.05 (left) and 0.5 (right). For the HWM fee structure, by the inherent design, 
its surrender region is shown to exhibit features of both the state-dependent fee structure and the 
HWM fee, namely a banded-shape region below θ and an upper right corner region beyond θ. The 
banded-shape region is attributed to the presence of the state-dependent fee component while 
the upper right corner region is due to the HWM fee component in the fee structure. For the 
latter, we note that it may be optimal for the PH to surrender when the account value is large 
(above the threshold θ) due to the possible payment of the HWM fee α. 

From Figure 2, we also highlight the following features. Firstly, higher HWM fee α (and 
consequently lower constant fee c) discourages the PH to surrender the VA contract when the 
investment account is lower than the threshold θ. This is intuitive as the insurance fee paid is 
reduced and as such there is less incentive for the PH to surrender the VA policy. This explains the 
gradual subsiding of the lower part of the banded-shape surrender region as the HWM fee α 
increases. Secondly, a higher HWM fee incentivizes the PH to surrender the contract when the 
investment account is higher than the threshold θ since it charges more when the investment 
account performs well. This explains why increasing the HWM fee α enlarges the surrender 
regions in the upper right corner of the graphs. 

Finally, in Figure 3 we present the optimal surrender regions at times t = 8, t = 12, t = 16, and t = 20 
for a HWM fee α = 0.2 with contract length T = 25 and market volatility σ = 0.15. We observe that 
the PH is more likely to surrender the contract when the VA policy moves closer to maturity, which 
is reflected by the enlargement of surrender regions over time. The reason is that the PH is less 
patient since the embedded guarantees are generally less valuable as we get closer to maturity (all 
else being equal).  
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Figure 3: Optimal Surrender Regions at Different Times 

Figure 3 presents the optimal stopping regions for a HWM fee α = 0.2 at different times. 
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4 The Naive Policyholder (Type 1) 
For the rest of the paper, we examine the impact of the VA with a HWM fee structure on a PH who 
quantifies her welfare according to an MV criterion. For comparative purposes, the PH’s welfare 
under the constant and state-dependent fee structures is also considered. Specifically, the PH is 
assumed to evaluate the welfare gained from the VA contract by measuring both the mean and 
variance of the VA payout. The MV analysis is the cornerstone of modern portfolio theory. Here, a 
relatively low variance of the VA payouts (relative to its mean) is usually desirable, in particular for 
risk-averse investors who put an accrued importance on the stability of their investment. 

To encompass a variety of PH behaviour, we consider the following three types of PHs: a naive PH 
(Type 1), a naive PH with exogenous shock (Type 2), and a sophisticated PH (Type 3). More 
specifically, Type 1 corresponds to a PH who never surrenders the contract, Type 2 corresponds to 
a PH who surrenders the contract at an independent exponential time (due to exogenous shocks, 
for example), and Type 3 corresponds to a PH who optimally surrenders the contract. In this 
section, we focus on evaluating the welfare of the Type 1 PH. The welfare of the Type 2 and Type 3 
PHs will be treated separately in Sections 5 and 6, respectively. The rationale for evaluating the 
welfare of the Type 1 PH is that VAs are complex life insurance products which are known to 
impede people’s ability to measure their values (see Brown et al., 2017). PHs without adequate 
financial literacy or market knowledge may not understand VAs well enough to optimally exercise 
their surrender rights. Dismissing the option to surrender the contract (i.e., the Type 1 PH) is one 
kind of extreme behaviour that is typical for naive PHs (inadequate financial literacy or market 
knowledge). This behaviour is also a reflection of the empirical observation that PHs exercise VA 
contracts less often than the risk-neutral-pricing behaviour suggests. 

Suppose that the dynamics of the underlying policy fund under the physical probability measure P 
follows a geometric Brownian motion 

 

where Wt is a Brownian motion under the measure P. As mentioned above, the Type 1 PH fails to 
make use of the embedded surrender option. In other words, the contract expires with a payment 
either at the time of death or at maturity. We assume that the welfare of the Type 1 PH is 
quantified by the following MV value function V that penalizes for the variance of the VA payout: 

 

where γ(·) corresponds to the state-dependent risk aversion function, ζ is the subjective discount 
rate of the PH, and ρ stands for the PH’s future lifetime. In what follows, we adopt a similar state-
dependent risk aversion function as in Björk et al. (2014); that is, 

 , (8) 

where γ is the constant level of risk aversion of the PH. In contrast to Björk et al. (2014), the choice 
of the denominator is to adapt to the particular context of the VA with embedded guarantees. We 
note that Eq. (7) can be rewritten as 
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 , 

where ν1 and ν2 correspond to the first and second moments of the VA payout, respectively; that 
is, 

νp(t,F,m) = Et,F,m he−pζ(ρ∧T) max(Fρ∧T,Gρ∧T)pi, for p = 1,2. 

For the Type 1 PH, we further have 

 , 

for p = 1,2. We propose to solve the PDEs for ν1 and ν2 to obtain V. By the Feynman–Kac formula, 
for (t,F,m) ∈ (0,T) × O, νp (p = 1,2) satisfies 

 , (9) 

for , with boundary conditions 

  for (F,m) ∈ [0,m] × [0,∞), 

 , for (t,m) ∈ [0,T) × [0,∞), (10) 

  for (t,m) ∈ [0,T) × [0,∞). 

Henceforth, we conduct all numerical examples with µ = 8%, σ = 0.15, and ζ = 0.05. All other 
parameter inputs are as in Table 1. In what follows, the mean and variance of the VA payout as 
well as the PH’s welfare are all evaluated at the point (t,F,m) = (0,F0,F0) and the fair fees are as 
given by Table 2. 

Table 3 summarizes the mean and variance of the VA payout together with the welfare for a naive 
PH (Type 1) with three different levels of risk aversion. Two time horizons are considered, namely 
T = 10 and T = 25. 
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Table 3: Welfare of the Naive PH 

Table 3 summarizes the mean and variance of the VA payout as well as the PH’s welfare for three 
risk aversion levels under different fee structures. Two time horizons are being considered (T = 10 
and T = 25). The welfare is evaluated by the MV value function V in Eq. (7) at the point (t,F,m) = 

(0,F0,F0). The highest mean and welfare and the lowest variance are highlighted in bold. 

 

T = 10 

 

Fee structure Et,F,m[·] Vart,F,m[·] Welfare γ = 0.6 

 

Welfare γ = 1.2 Welfare γ = 1.8 

Constant 114.83 3479.10 104.39 93.95 83.51 

 

HWM α = 0 121.21 4732.30 107.01 92.81 78.62 

HWM α = 0.05 118.94 4110.10 106.61 94.28 81.95 

HWM α = 0.2 112.93 2856.60 104.36 95.79 87.22 

HWM α = 0.5 105.40 1700.10 100.30 95.20 90.10 

   
T = 25 

  

Constant 

 

140.27 

 

9595.10 

 

111.48 

 

82.69 

 

53.91 

 

HWM α = 0 147.79 11475.00 113.37 78.94 44.52 

HWM α = 0.05 142.77 9829.20 113.29 83.80 54.31 

HWM α = 0.2 127.98 6185.00 109.43 90.87 72.32 

HWM α = 0.5 109.75 2856.90 101.74 92.60 84.03 
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We consider the HWM fee structure with the HWM fee α ranging from 0 to 0.5, where the case α 
= 0 corresponds to the state-dependent fee structure. For completeness, the results for the 
constant fee structure are also included.  

There are a few points worthy of mention here. Firstly, we observe that the reduction in the 
variance of the VA payout is accompanied by a reduction in its mean when the HWM fee α 
increases. Indeed, as the HWM fee α increases (and the constant fee c decreases), less (resp. 
more) insurance fees are charged when the investment account is low (resp. high), which indicates 
that the investment account is less likely to achieve extreme high or low values.  

Secondly, the HWM fee structure can be seen to increase a naive PH’s welfare in some cases. 
More specifically, the HWM fee structure benefits naive PHs who are sufficiently risk-averse. For 
the low level of risk aversion (γ = 0.6), we can see from Table 3 that the PH’s welfare is the highest 
under the state-dependent fee structure. However, for a slightly higher level of risk aversion (γ = 
1.2 or 1.8), the PH’s welfare is the highest under the HWM fee structure with a HWM fee of α = 
0.2 and 0.5, respectively.6 This can be attributed to the fact that PHs with different levels of risk 
aversion exhibit different attitudes towards the risk as measured by the variance of the VA payout. 
More specifically, more risk-averse PHs strive to reduce the variance of the VA payout even if this 
reduction is accompanied by a reduction in the expected payout (as their overall welfare 
increases). 

 

 

 

 

 

 

 

  

 
6 The increase of the PH’s welfare is not always monotone in α. One exception is when T = 10 and γ = 1.2, where the PH’s welfare 
peaks at a HWM fee of α = 0.2 and it slightly dips for a higher α. Nevertheless, this does not contradict the conclusion that the HWM 
fee structure benefits naive PHs who are more risk-averse. 
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Figure 4: Welfare of Naive PHs across Different Risk Aversions 

Figure 4 depicts the welfare of naive PHs (Type 1) for different risk aversion levels under different 
fee structures. 

 
To further examine the impact of the risk aversion level, we depict in Figure 4 the naive PH’s 
welfare for a range of risk aversion levels for a time horizon of T = 10. We consider all five fee 
structures analyzed above. We notice that the Type 1 PH’s welfare is less sensitive to the risk 
aversion level γ for a higher HWM fee α. This is attributed to the fact that a higher HWM fee α 
corresponds to a lower VA payout variance and consequently generates a flatter downward trend 
of PHs’ welfare when increasing the risk aversion level γ. Therefore, we can conclude that the 
HWM fee structure helps stabilize the welfare of a group of naive PHs across different levels of risk 
aversion γ. In other words, the HWM fee structure is more robust for a large group of naive PHs 
with a variety of risk aversion levels than both the constant and state-dependent fee structures. 
This feature makes the VA more marketable as it lessens the inequality in welfare among naive 
PHs with different risk preferences. 
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5 The Naive Policyholder with Exogenous Shocks (Type 2) 
In this section, we continue the welfare analysis for a naive PH with exogenous shocks (Type 2). 
Once again, results for the constant and state-dependent fee structures are also provided for 
comparative purposes. As mentioned above, a naive PH may completely dismiss the surrender 
option embedded in the VA contract due to a lack of financial literacy or market knowledge. 
Nevertheless, the PH may experience certain shocks in their life that could trigger surrendering the 
policy to access liquidity. These shocks are normally exogenous to the financial market, namely 
exogenous to the performance of the investment account. Therefore, to model the Type 2 PH’s 
behaviour, we assume that the arrival time τ of a certain exogenous shock follows an exponential 
distribution with mean , independently of the PH’s future lifetime ρ as well as the investment 
account {Ft}t∈[0,T]. We assume that the PH surrenders the contract upon the arrival of the shock. 

Note that the VA contract will either pay a surrender, death, or maturity benefit. Therefore, as in 
Section 4, the Type 2 PH’s welfare is quantified by the following MV value function V defined as: 

  , (11) 

where 

 
corresponds to the contract payouts. As before, we make use of the first and second moments of 
the VA payout ν1 and ν2 to facilitate the quantification of the Type 2 PH’s welfare. The expressions 
of the first and second moments ν1 and ν2 of the VA payout are presented in the following 
proposition. 

Proposition 1. For the Type 2 PH who surrenders the contract following an independent 
exponential distribution at rate η > 0, the first and the second moments of the VA payout are 
respectively given by 

 
where δtp = pζ + λx+t + η for p=1,2. 

The proof of Proposition 1 is in Appendix A.2. By the Feynman–Kac formula, we can derive the 
corresponding PDEs for ν1 and ν2 in the following. For (t,F,m) ∈ (0,T) × O, νp (p = 1,2) satisfies 

 , (13) 

with boundary conditions 
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where  

, and δp = δtp. 

Tables 4 and 5 summarize the mean and variance of the VA payout and the corresponding welfare 
under different risk aversion levels γ for a VA with time horizon T = 10 and T = 25, respectively. 
Results are provided for the same fee structures as the ones considered in Section 4. The 
surrender time of the PH follows an independent exponential distribution with surrender 
intensities η = 0.1, 1, or 10. Note that the hypothetical case η = 0 reduces to the Type 1 PH of 
Section 4. We sum up observations from Tables 4 and 5 in the following.  

Firstly, as expected, we observe that the mean and the variance of the VA payout generally 
decrease with respect to the surrender intensity η. This is an immediate consequence of the fact 
that the VA payout is generally made sooner, more likely triggered by a surrender whose payout is 
reduced by a hefty surrender penalty.  

Secondly, for a small surrender intensity η (e.g., η = 0.1 or 1), as in Section 4, the mean and 
variance of the VA payout are reduced when the HWM fee α increases. However, for a large 
surrender intensity η (e.g., η = 10), this reduction of the mean when the HWM fee α increases no 
longer holds. This is because the PH with a large surrender intensity is more likely to surrender the 
contract, and if so at an early time, making it more difficult for the HWM fee α to become 
effective.  

Thirdly, the HWM fee structure is beneficial for PHs with a significant probability to experience 
some exogenous shocks during the lifetime of the contract. For a large surrender intensity (η = 
10), the highest welfare appears at a HWM fee α = 0.5 for all three levels of risk aversion γ and 
both time horizons T = 10 and T = 25. Lastly, Type 2 PHs’ welfare under surrender intensities η = 
0.1 and η = 1 is comparable to that of Type 1 PHs in the sense that the HWM fee is favourable to 
Type 2 PHs who are more risk-averse (γ = 1.2, or 1.8) while the state-dependent fee structure is 
favourable to Type 2 PHs who are less risk-averse (γ = 0.6). This can be seen from the highest 
welfare and the trend of PHs’ welfare when increasing the HWM fee α under the two surrender 
intensities η = 0.1 or η = 1. 

As in Section 4, we intend to examine a group of Type 2 PHs’ welfare across a wide spectrum of risk 
aversion levels. We refer the reader to Figure 5, which depicts the Type 2 PH welfare as a function 
of the risk aversion level for different fee structures when the VA has a maturity of T = 10. In Figure 
5, the surrender intensity was chosen to be η = 0.1. 
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Table 4: Welfare of the Naive PH with Exogenous Shock 

Table 4 summarizes the mean and variance of the VA payout and the welfare for a Type 2 PH 
under different fee structures for the time horizon T = 10. The welfare is evaluated by the MV value 
function V in Eq. (11) at the point (t,F,m) = (0,F0,F0). The highest mean and welfare and the lowest 

variance are highlighted in bold.
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Table 5: Welfare of the Naive PH with Exogenous Shock 

Table 5 summarizes the mean and variance of the VA payout and the welfare for a Type 2 PH 
under different fee structures for the time horizon T = 25. The welfare is evaluated by the MV value 
function V in Eq. (11) at the point (t,F,m) = (0,F0,F0). The highest mean and welfare and the lowest 
variance are highlighted in bold. 
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Figure 5: Welfare of Naive PHs with Exogenous Shocks across Different Risk Aversions 

Figure 5 depicts the welfare of naive PHs with exogenous shocks (Type 2) for different risk aversion 
levels under different fee structures. 

 
Consistent to the Type 1 PH case, Figure 5 indicates that the HWM fee structure is more robust 
and consequently more marketable for a group of Type 2 PHs who are heterogeneous in risk 
preferences in comparison to the other two fee structures. Similarly as in Figure 4, a higher HWM 
fee α corresponds to a flatter line of welfare, which reflects that Type 2 PHs’ welfare is less 
sensitive to a change in the risk aversion level γ. 
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6 The Sophisticated Policyholder (Type 3) 
In this section, we examine the welfare of a sophisticated PH (Type 3) for the VA with a HWM fee 
structure. Once again, the corresponding results for the constant and state-dependent fee 
structures are also presented.  

Type 3 corresponds to PHs who surrender the contract optimally according to their preferences, 
and hence models the behaviour of PHs with adequate financial literacy and market knowledge. 
We formulate the PH’s welfare into a stochastic MV optimal stopping problem under a state-
dependent risk aversion (as in Björk et al., 2014). One of the major intricacies of the stochastic MV 
optimization problem is the well-known concept of time inconsistency (see, for example, Basak 
and Chabakauri, 2010; Björk and Murgoci, 2014; and Björk et al., 2017). To deal with this, we 
adopt the game theoretic approach proposed in Björk and Murgoci (2010) and derive an 
equilibrium stopping strategy for the PH by solving a system of EHJB equations. We point out that 
the present MV problem is different from the existing ones in the literature in the following 
aspects.  

Firstly, we deal with an MV optimal stopping problem which differs from MV optimal control 
problems. To apply the game theoretic framework in Björk and Murgoci (2010), we transform the 
optimal stopping problem into an optimal control problem with a binary control.  

Secondly, by the inherent design of the VA policy with the HWM fee structure, we solve an MV 
optimal stopping problem with two state variables over a random horizon. The level of complexity 
of the high-dimensional problem is further accrued by the state-dependent risk aversion which 
will lead to the introduction of another state variable. Also, the consideration of a random horizon 
further complicates the derivation of the system of EHJB equations. 

With the absence of an explicit solution to the value function, we resort to numerically solving the 
system of EHJB equations corresponding to the MV optimal stopping problem. We develop an 
algorithm based on Wang and Forsyth (2011) tailored to solve MV optimal control problems. This 
algorithm significantly reduces the complexity of directly solving the system of EHJB equations 
numerically by circumventing some complications arising from the high-dimensional nature of the 
problem and its iterative numerical procedure. Also, we further establish the connection between 
the algorithm and the system of EHJB equations by proving that the algorithm is indeed a 
numerical approximation to the system of EHJB equations. 

6.1 Model Formulation 
Note that the sophisticated PH (Type 3) optimally decides the surrender time to maximize the MV 
objective with a state-dependent risk aversion. Hence, the value function that quantifies the PH’s 
welfare is 

  (15) 

for (t,F,m) ∈ [0,T]×O¯, where H corresponds to the VA payout defined in Eq. (12), T[t,T] denotes the 
set of all stopping times τ valued in [t,T], and the risk aversion function γ(F) is as given in Eq. (8). 
Note that a stochastic optimal stopping problem can be viewed as an optimal control problem 
with binary controls (see, for example, Ebert et al., 2018, and Tan et al., 2018). Therefore, we can 
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regard our optimal stopping problem as an optimal control problem by introducing the following 
stopping rule. 

Definition 2. A stopping rule is a measurable function u : [0,T] × O → {¯ 0,1} where 0 corresponds 
to continuation and 1 corresponds to stopping. 

Specifically, in our setup, the continuation and stopping regions at time t ∈ [0,T) are defined as 

, 

with the corresponding stopping time τu defined as 

τu = inf{s ≥ t : u(s,Fs,Ms) = 1}. 

In light of the above, Eq. (15) is rewritten as 

 
where A is the admissible set of stopping rules. As discussed earlier, the nature of the stochastic 
MV optimization problem gives rise to the time inconsistency of the optimal strategy. As is 
common in the literature (see, for example, Björk and Murgoci, 2010), we propose to overcome 
the time-inconsistency issue by looking for an equilibrium strategy within the game theoretic 
framework. Following the definition of an equilibrium strategy over a random horizon in Landriault 
et al. (2018), we introduce the definition of an equilibrium stopping rule over a random horizon for 
the problem at interest here. 

Definition 3. For a fixed point (t,F,m) ∈ [0,T) × O¯, a small ε > 0, and an admissible stopping rule uˆ 
= {uˆs}s∈[t,T) conditional on ρ > t, define a stopping rule uε by 

 
in which (y,z) ∈ [0,m] × [0,∞). If 

 
for all (t,F,m) ∈ [0,T) × O¯, then uˆ is called an equilibrium feedback stopping rule and the 
corresponding equilibrium value function V is given by V (t,F,m) = J(t,F,m;τuˆ). 

In what follows, we present a verification theorem which justifies that a solution of a system of 
EHJB equations is a solution of the optimization problem (16). The proof of the theorem is 
deferred to Appendix A.3. 

Theorem 1. Suppose that there exist functions V,g ∈ C1,2,1([0,T] × O¯), f ∈ C1,2,1,2([0,T] × O ×¯ [0,m]), 
and a stopping rule uˆ satisfying the following conditions: 

• For any (t,F,m) ∈ [0,T] × O¯, V solves 
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with boundary conditions 

 
• For any (t,F,m) ∈ [0,T) × O¯, 

 
• For fixed y ∈ [0,m] and for any (t,F,m) ∈ [0,T] × O¯ s.t. uˆ = 0, f solves 

 
with boundary conditions 

 

And for . 

 

• For any (t,F,m) ∈ [0,T] × O¯ s.t. uˆ = 0, g solves 

 FF − λx+tg + λx+t max(F,G) = 0, (22) 

with boundary conditions 
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And for uˆ = 1, g(t,F,m) = ψ(t,F). 

Then uˆ is an equilibrium stopping rule such that 

 
This system of EHJB equations corresponds to a high-dimensional free boundary problem with 
three unknown functions V , f, and g, where ˆu = 0 corresponds to the continuation region and ˆu 
= 1 to the stopping region. 

6.2 The Algorithm 
Given the complex nature of the system of EHJB equations (17)–(23), we propose to numerically 
solve it via the development of an algorithm. Inspired by the work of Wang and Forsyth (2011) on 
the development of an algorithm for MV optimal control problems, the proposed algorithm will 
circumvent the complexity arising from directly solving the system of EHJB equations (17)–(23) 
corresponding to our MV optimal stopping problem. In addition, we go a step further than Wang 
and Forsyth (2011) by establishing a connection between the system of EHJB equations (17)–(23) 
and the algorithm. 

Directly solving the system of EHJB equations (17)–(23) numerically using a finite difference 
method roughly entails the following steps: 

1. Partition [0,T] into N equal intervals s.t. ∆  and tn = T − n∆t for n = 0,1,...,N. 

2. At time tn, solve g numerically using Eq. (22) with boundary conditions (23) and solve f 
numerically for each fixed y ∈ [0,m] using Eq. (20) with boundary conditions (21), by 
assuming that ˆu = 0 (no surrender) over the domains [0,m) × [0,∞). 

3. Substitute the resulting f and g in Eq. (17) and solve V numerically using Eq. (17) with 
boundary conditions (18) to obtain an equilibrium stopping rule ˆu (or equivalently an 
equilibrium stopping region). 

4. Update f and g so that their values correspond to the equilibrium stopping rule ˆu. 
Specifically, if uˆ(tn,F,m) = 0, keep f(tn,F,m,y) and g(tn,F,m) unchanged; if ˆu(tn,F,m) = 1, let 
f(tn,F,m,y) = ) and g(tn,F,m) = ψ(tn,F). 

5. Substitute the updated f and g in Eq. (17) to update V . 

6. Repeat Steps 4 and 5 until V converges. 

7. Move to time tn+1 and repeat Steps 2–6. 

The challenges of solving the system of EHJB equations (17)–(23) numerically using the above 
steps are three-fold. Firstly, solving f is time-consuming as it entails solving an unknown function 
with two state variables for each fixed y ∈ [0,m]. Secondly, the complex form of Eq. (17) makes the 
computational process highly non-trivial. Thirdly, at each time point tn, a time-consuming iterative 
procedure is required to solve for V and identify an equilibrium stopping rule ˆu. 
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In light of the above, we develop an algorithm based on Wang and Forsyth (2011) to circumvent 
the complexity of numerically solving the system of EHJB equations (17)–(23) directly. As in 
Sections 4 and 5, the mean and variance of the VA payout function H can be represented by its 
first and second moments. Therefore, the value function V in Eq. (16) can be rewritten as 

 
where  

 
denote the first and second moments of the VA payout function H under a certain stopping rule u 
∈ A, respectively. Furthermore, from Eq. (24), we observe that the value functions V , f, and g are 
all linear combinations of ν1 and ν2 under an equilibrium stopping rule. We also observe that over 
the domain [0,T] × O¯ s.t. ˆu = 0, νp (p = 1,2) satisfy Eq. (9) with boundary conditions (10) with ζ = 0. 
In view of this, instead of numerically solving the system of EHJB equations (17)–(23) in a direct 
manner, one can get ν1 and ν2 by solving their corresponding PDEs to obtain an equilibrium 
stopping rule. We break this procedure into the following steps: 

Step 1: At time tn, solve νp (p = 1,2) numerically using Eq. (9) with boundary conditions Eq. (10) 
with ζ = 0, by assuming that u = 0 (no surrender) over the domain O¯. 

Step 2: Obtain an equilibrium stopping rule ˆu by substituting the corresponding ν1 and ν2 in Eq. 
(25). 

Step 3 Update ν1 and ν2 s.t. if ˆu(tn,F,m) = 0, keep ν1(tn,F,m) and ν2(tn,F,m) unchanged; if ˆu(tn,F,m) = 

1, let ν1(tn,F,m) = ψ(tn,F) and ν2(tn,F,m) = ψ2(tn,F). 

Step 4 Move to time tn+1 and repeat Steps 1–3. 

This iterative procedure circumvents many of the challenges resulting from solving the system of 
EHJB equations (17)–(23) directly. More specifically, we no longer deal with the high 
dimensionality of the function f, and the iterative procedure at each time point tn has now been 
eliminated. Also, the determination of an equilibrium stopping rule ˆu from Eq. (25) is much 
simpler than solving the complex Eq. (17). However, since we bypass solving the system of EHJB 
equations (17)–(23) directly by solving for ν1 and ν2 (through their PDEs), we need to establish that 
an equilibrium stopping rule generated by going through Steps 1–4 is the same as the equilibrium 
stopping rule resulting from the solution of the system of EHJB equations (17)–(23). The following 
theorem establishes this equivalence. 
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Theorem 2. Let uˆ be an equilibrium stopping rule resulting from the system of EHJB equations 
(17)–(23). For any (t,F,m) ∈ [0,T]×O¯ s.t. uˆ = 0, let νp (p = 1,2) satisfy Eq. (9) with boundary 
conditions (10) with ζ = 0. For any (t,F,m) ∈ [0,T] × O¯ s.t. uˆ = 1, let ν1(t,F,m) = ψ(t,F) and ν2(t,F,m) = 
ψ2(t,F). Then 

  (27) 

satisfy the system of EHJB equations (17)–(23). 

The proof of Theorem 2 is in Appendix A.4. Upon the establishment of Theorem 2, we can 
determine an equilibrium stopping rule numerically by going through Steps 1–4. A detailed 
algorithmic procedure is as follows: 

 Eq.(9) (10) (∗) ψ 

 ···  ν1, ν2 V ν1, ν2  ... 

Partition [0,T] into N equal time intervals such that ∆  and tn = T − n∆t for n = 0,1,...,N. 
Partition [0,1] into K equal intervals such that ∆  and zi = i∆z for i = 0,1,...,K. Truncate the 
domain of m at mmax and partition [0,mmax] into M equal intervals such that ∆  and mj = j∆m 

for j = 0,1,...,M. Define Vi,jn := V (tn,zi,mj), (νu1)ni,j := ν1(tn,zi,mj;τu), (νu2)ni,j := ν2(tn,zi,mj;τu), and ψi,jn := 
ψ(tn,zi,mj) for n = 1,...,N, i = 0,...,K, j = 0,...,M, and u ∈ {0,1}. Moreover, if u = 1, we have 

 and ( . 
 

Algorithm 1 Equilibrium Stopping Rule 

Figure 6: A Diagram Depicting the Propagation of the Procedure for Algorithm 1 

Figure 6 gives a diagram depicting the propagation of procedures to better illustrate Algorithm 1. 
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6.3 Numerical Experiments 
In what follows, we conduct some numerical analyses of a sophisticated PH (Type 3) welfare under 
the HWM fee structure. For completeness, we also present the optimal surrender regions of the 
PH. For comparative purposes, the welfare and optimal surrender regions of the Type 3 PH under 
the constant and state-dependent fee structures are also presented. 

Table 6 summarizes the welfare of sophisticated PHs (Type 3) with different risk aversion levels for 
the time horizons T = 10 and T = 25. Consistent with the results for the Type 1 and Type 2 PHs, the 
HWM fee structure can be seen to increase a Type 3 PH’s welfare. More specifically, the HWM fee 
structure benefits Type 3 PHs who are more risk-averse (with risk aversion levels γ = 1.2 and 1.8). 
However, for a Type 3 PH who is less risk-averse, the state-dependent fee structure is favourable 
among the fee structures considered. We also observe that the HWM fee structure is more 
advantageous for a Type 3 PH when the VA contract has a shorter maturity. 

Table 6: Welfare of the Sophisticated PH 

Table 6 summarizes the sophisticated PHs’ welfare with three risk aversion levels over two time 
horizons under different fee structures. The welfare is evaluated by the MV value function V in Eq. 

(15) at the point (t,F,m) = (0,F0,F0). The highest welfare is highlighted in bold. 

 
 T = 10 T = 25 

 
 Fee structure γ = 0.6 γ = 1.2 γ = 1.8 γ = 0.6 γ = 1.2 γ = 1.8 

 

 
This observation is also in line with that of a Type 2 PH with a large surrender intensity (η = 10). 
Indeed, for T = 10, increasing the HWM fee α also increases a Type 3 PH’s welfare for both γ = 1.2 
and 1.8, while for T = 25 the PH’s welfare seems to peak earlier as the highest welfare is achieved 
with a HWM fee α = 0.05 among the set of fee structures considered. 

  

155 Constant . 137 71 . 118 34 . 99 204 . 166 31 . 129 69 . 13 
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Similar to the analysis in Sections 4 and 5, we investigate the sensitivity of a group of Type 3 PHs’ 
welfare with respect to risk aversion level γ. Figure 7 depicts the value of a sophisticated PH 
welfare across a range of different risk aversion levels for different fee structures when T = 10. As 
can be seen from this figure, the results are consistent with those from Figures 4 and 5. We 
observe that a higher HWM fee α leads to less sensitive (flatter welfare line) Type 3 PHs’ welfare 
with respect to the risk aversion level γ. Therefore, we can also conclude that the HWM fee 
structure is more robust and consequentially more marketable for a group of Type 3 PHs with 
heterogeneous risk preferences. 

For completeness, we examine a Type 3 PH’s optimal surrender behaviour under the HWM fee 
structure. For comparative purposes, the PH’s surrender behaviour under the constant and state-
dependent fee structures is also included. For the following analysis, we assume T = 25 and γ = 1.8. 
Figure 8 presents the optimal surrender regions of a sophisticated PH (Type 3) under different fee 
structures at time t = 12. Note that we present an enlarged version of the original surrender 
regions since the original ones are quite small. There are a few observations worthy of mention. 
Firstly, compared to surrender regions of a risk-neutral-pricing PH, surrender regions of a Type 3 
PH are significantly diminished under all fee structures. As mentioned before, there is discordance 
between the empirical PH behaviour and the risk-neutral-pricing behaviour. 

Figure 7: The Welfare of Sophisticated PHs across Different Risk Aversions 

Figure 7 depicts the change of sophisticated PHs’ welfare across different risk aversion levels under 
different fee structures. 

 

Specifically, PHs exercise their surrender rights far less frequently than the risk-neutral-pricing 
behaviour suggests. Although this market phenomenon can be explained by PHs’ sub-optimal 
behaviour or market friction (see Moenig and Bauer, 2015), we deem that PHs’ behaviour is more 
closely aligned with that of an MV-maximizing PH.  
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Further, the optimal surrender regions in Figure 8 are located in the upper right corner of each 
panel. This observation indicates that the Type 3 PH’s surrender behaviour is certainly different 
from that of a risk-neutral-pricing PH, especially under the state-dependent and HWM fee 
structures whose optimal surrender regions, as shown before, normally entail a banded-shape 
zone when the investment account is lower than the threshold θ.  

Finally, for a Type 3 PH the difference in the surrender regions under different fee structures is 
somewhat negligible. In other words, changing fee structures has little impact on the surrender 
behaviour of a sophisticated PH with MV-maximizing strategy. This highlights an advantage of the 
MV-maximizing strategy for the insurer; that is, if PHs follow an MV-maximizing strategy, the 
insurer should not anticipate material changes in PHs’ behaviour under different fee structures, 
which is expected to simplify the insurer’s risk management activities related to a large portfolio 
of VAs. 

Figure 8: Optimal Surrender Regions for a Sophisticated PH 

Figure 8 presents the optimal surrender region of a sophisticated (Type 3) PH at time t = 12. The 
surrender regions presented are an enlarged version of the original surrender regions. 
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7 Conclusion 
In this paper, we introduce a novel HWM fee structure, show its merits to control the variance of 
the VA payout by stabilizing the investment account, and discuss its implications from the 
standpoint of both the insurer and the PH. 

Under the conventional risk-neutral pricing framework to find a pair of fair fees for the VA, we 
later conduct a comprehensive analysis of a PH welfare whose risk preference is quantified by an 
MV strategy. Among other benefits, it was demonstrated that the VA with the novel HWM fee 
structure can, in some cases, help the PH achieve a higher level of welfare. 

Future research should explore the impact of the HWM fee structure under various guarantees; 
for instance, withdrawal-type benefits, or under multiple market models such as a stochastic 
volatility model. 

Dynamic hedging of a VA policy under the HWM fee structure is also worth investigating. 
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A Some Proofs 
A.1 Verification Theorem for the Pricing PDE 
In Section 2.4, the pricing PDE (3) with boundary conditions (4) is presented. Note that Eq. (3) 
corresponds to the PDE that the value function satisfies over the continuation region Ct. Over the 
region [0,T] × O¯, the value function satisfies the following variational inequality 

 min{−Vt − LV − λx+t max{F,G},V − ψ} = 0. (28) 

We prove the following verification theorem for Eq. (28) with boundary conditions (4). 

Theorem 3. Suppose that there exists a function v ∈ C1,2,1([0,T] × O¯) satisfying the quadratic 
growth condition7 and define τ∗ := inf{s > t : v(s,Xs) = ψ(s,Xs)}. If 

• for any (t,x) ∈ [0,T] × O¯, v satisfies the variational inequality (28), and 

• v satisfies the boundary conditions (4), 

then v = V and τ∗ is an optimal stopping time. 

Note that in Theorem 3, we let Xt = (Ft,Mt) for t ∈ [0,T] and x = (F,m) for ease of notation. 

Proof. By the boundary conditions (4), we establish that τ∗ ∈ T[t,T] since v(T,x) = ψ(T,FT) = max(F,GT). 
Define a sequence of stopping times 

. 

Also, ) since [ ) by definition. Therefore, by Itô’s 
formula and letting ξs = λx+s + r for s ∈ [0,T], we establish that 

 
Note that the second equality is made possible by the fact that (vm − vFα1Ft≥θ)dMt = 0 a.s., which 
holds since either dMt = 0 for Ft < Mt or vm − vFα1Ft≥θ = 0 for Ft = Mt by boundary conditions (4). 
Taking the conditional expectation EQt,x[·] on both sides of this equality and then rearranging the 
resulting equation by further making use of Eq. (3), we get 

 
  

 
7 There is a constant C such that |v(t,x)| ≤ C(1 + |x|2) where x = (F,m) and (t,x) ∈ [0,T) × O¯. 
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Since τtn → τ∗ as n → ∞, by dominated convergence theorem and the quadratic growth condition, 
it follows that 

 . 

For any τ ∈ T[t,T], we have −vt − Lv − λx+t max{F,G} ≥ 0 on [t,τ) since V ≥ ψ by the definition of τ∗. 

Therefore, 

 
for any τ ∈ T[t,T]. Hence, we have v = V and τ∗ is an optimal stopping time.  
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A.2 Proof of Proposition 1 
Proof. Suppose that the stopping time τ follows an exponential distribution with parameter η, 
independently of the future lifetime of the PH ρ and the performance of the investment account 
{Ft}t∈[0,T]. The first moment of the VA payout is 

ν1(t,F,m) = Et,F,m he−ζ(τ∧ρ∧T−t)H(Fτ∧ρ∧T)i. 

We consider three cases, namely τ ∧ ρ > T, τ < ρ ∧ T, and ρ < τ ∧ T. Also, for simpler notation, we 
write Et,F,m[·] = Et[·] and ν1(t,F,m) = ν1. It follows that 

 
where 

• for Term A: 

 
• for Term B: 

 
• and for Term C: 

 
Combining Terms A, B and C, we obtain 

 . 

The expression for ν2(t,F,m) is derived similarly.   
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A.3 Proof of Theorem 1 
To prove Theorem 1, we first introduce some notation and results for brevity of illustration. 

 
Proof. The proof of Theorem 1 can be divided into two parts. In the first part, we prove that V , g, 
and f are indeed the solution of their probabilistic interpretation (24) under the stopping rule ˆu. 
In the second part, we prove that ˆu is an equilibrium stopping rule. Firstly, we prove that 

 , 

where 

 
Suppose that g ∈ C1,2,1([0,T] × Oˆ) satisfies Eq. (22) with boundary conditions (23), and define a 
sequence of stopping times 

. 

Applying Itô’s formula to ), we get 
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Taking Et[·] on both sides of the equation and invoking Eq. (22) with boundary conditions (23), we 
obtain 

 . 

Letting n → ∞ gives , which further leads to 

 

since 

τuˆ = inf{s ≥ t : uˆ(t,F,m) = 1}. 

Define fy(t,F,m) := f(t,F,m,y) for a fixed y and similarly, we apply Itô’s formula to 
 and obtain 

 
Taking Et[·] on both sides of the equation and invoking Eq. (20) with boundary conditions (21) 
results in 

. 
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By letting n → ∞, we have τtn → τuˆ, which in turn leads to 

 

 . 

To verify the probabilistic interpretation of V , we need to show that 

. 

Since V (T,F,m) = ψ(T,F), we have τuˆ ∈ T[t,T]. Applying Itô’s formula to ), we get 

 
Since [t,τtn) ⊂ [t,τuˆ), we deduce that V > ψ on [t,τtn). Using Eq. (17) for V > ψ, taking Et[·] on both 
sides of the equation and letting n → ∞, we obtain 

 

Now, applying Itô’s formula and conducting operations as above on ), we 
deduce  
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Again, applying Itô’s formula and conducting operations as above on ), we 
have 

 

Combining the expressions for f(t,F,m,F) and ), it is easy to establish that 

. 

Now we prove that the stopping rule uˆ defined in Eq. (1) is an equilibrium stopping rule. Recall 
that we define a stopping rule uε such that 

 
If u = 1, then J(t,F,m;τuε) = ψ(t,F) ≤ J(t,F,m;τuˆ) = V (t,F,m). Therefore, uˆ automatically satisfies the 
definition of an equilibrium stopping rule. If u = 0, we have 

 
Also, we have 
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Taking Et[·] on both sides of the equation, we obtain 

 
Therefore, 

 

Thus, 

 
where fy(t,F,m) = f(t,F,m,y) with the fourth variable y fixed. By rearranging the equation above, we 
get 

 
Invoking Eq. (17) and (18), dividing both sides of the equation by ε, and letting ε go to 0, we get 

. 

This completes the proof. 
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A.4 Proof of Theorem 2 
Proof. Recall that for ˆu = 0 the first two moments νp (p = 1,2) satisfy Eq. (9) with boundary 
conditions (10) with ζ = 0. Note that from the linear combination (27), we have 

 . 

Therefore, the derivatives of V with respect to t, F, and m can then be expressed in terms of those 
of ν1 and ν2 as follows: 

. 

Similarly, for f, its derivatives can be expressed as 

. 

Firstly, we check if the linear combination (27) solves Eq. (17) with boundary conditions (18). For 
ˆu = 1, 
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For ˆu = 0, we know that 

. 

We plug in the derivatives of V, f, and g in terms of ν1 and ν2 and verify that the equality still holds: 

 
We must now check the boundary conditions (18): 

• for the terminal condition, 

, 

• for the condition when F = 0, 

 
• and for the condition when F = m, 
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Finally, we check if the function f defined in the linear combination (27) solves Eq. (20) with 
boundary conditions (21). For ˆu = 1, 

 
For ˆu = 0, one obtains 

. 

As before, we plug in the derivatives of f in terms of ν1 and ν2 and verify that the equality still 
holds: 

 
Now we check the boundary conditions (21): 

• for the terminal condition, 

, 

• for the condition when F = 0, 
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• for the condition when F = m, 

 
This completes the proof.  
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