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Abstract 
In the paper, we propose a framework to allow populations at disparate mortality development 
stages to be contemporaneously taken into account through a bivariate-population mortality 
system with an underlying process of common mortality trend (CMT). As one of the main 
contributions of the paper, the CMT model is used as a base learner in a computationally 
friendly framework to effectively borrow information from multiple populations for the 
mortality prediction of a target population through a well-established procedure of model 
averaging. Empirical studies with the Human Mortality Database confirm that the proposed 
CMT-based prediction framework yields a substantial improvement in prediction performance 
over a set of benchmark prediction models. Furthermore, these empirical studies reveal that a 
key parameter introduced in the CMT model is able to characterize the development stage of 
one population relative to the other in the CMT model. 

Keywords: Mortality Prediction; Bivariate-Population Model; Human Mortality Database; Model 
Averaging; Borrowing Information. 

 



 

3 
 

1 Introduction 
Longevity risk, attributed to the increase in human life expectancy, has been recognized as one 
of the major risks faced by insurers, governments, and individuals. The effect of longevity risk 
tends to be systematic in nature, and it has created a substantial financial pressure on pension 
funds and annuity providers. Mortality modelling is a critical component to management of 
longevity risk. The past decades have witnessed a steady proliferation of various mortality 
models introduced in the literature. The Lee-Carter model (Lee and Carter, 1992) has become 
the benchmark model for mortality modelling and forecasting of a single population. This 
model decomposes age-specific mortality rates over a certain time period into the mean age-
specific mortality rates, the mortality trend, the amount of mortality changes at a given age, 
and a noise term. 

As an important prototype of various coherent multi-population mortality forecasting models, 
the Augmented Common Factor (ACF) model proposed by Li and Lee (2005) extends the Lee-
Carter model to the case of multiple populations. Coherent multi-population mortality 
forecasting models were designed to avoid unrealistic crossovers or divergence in anticipated 
future mortality across countries or between genders, which could arise from applying a single-
population model to each population separately. The main idea behind coherent forecasting is 
that mortality forecasts for populations with similar mortality developments are not expected 
to diverge substantially even though structural differences remain across populations. Further 
development of coherent multi-population mortality models includes Li and Hardy (2011); 
Russolillo et al. (2011); Li (2013); Wang and Yang (2013); Zhou et al. (2014); Kleinow (2015) 
among others. Another strand of potent literature on multi-population mortality modelling is 
based on an age-period-cohort (APC) structure of mortality rates, a time-honoured 
methodology in epidemiology. The representative literature from this strand includes Dowd et 
al. (2011); Janssen et al. (2013). The basic idea of the APC-structure-based models is to describe 
a mathematical relationship between death rates and attained age, and that between calendar 
period and birth cohort. Furthermore, a functional data approach has also been adopted 
recently for multi-population mortality modelling; for example, Hyndman et al. (2013); Shang 
and Hyndman (2017). Moreover, Li et al. (2015) proposed bivariate-population generalizations 
for single-population models M1-M3 and M5-M8 from Cairns et al. (2009). 

It has been widely documented that coherent mortality forecasting models are generally 
superior to individual mortality forecasting models, but multi-population models have so far 
been applied only to a group of populations in similar mortality development stages in the 
sense that they have similar trajectories or patterns of mortality development; see, for 
example, Li and Lee (2005); Li et al. (2017). 

In this paper, we propose a framework that describes a bivariate-population mortality system 
which allows two populations at disparate mortality development stages to be 
contemporaneously taken into account. The model is developed based on the rationale that 
various populations enjoy certain commonality in their respective trajectories of evolving over 
time, which has been widely documented in empirical analysis of mortality data. According to 
Zhou et al. (2014), some populations dominate while other populations follow its mortality 
dynamics. For instance, a developing country may demonstrate a similar mortality 
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improvement pattern in the recent decade to what a developed country has experienced 
earlier in 1990s. Additionally, as mentioned in Section 5.4 of Li et al. (2015), for two 
populations, the period effect estimates, which capture the mortality developing trend in time, 
usually roughly co-move with one another, although they are located at different absolute 
levels. Due to this similarity in the trajectories and patterns of their mortality rates, populations 
at different development stages can still bring in useful information to enhance the 
performance of mortality prediction, with a well-designed mortality model that is capable to 
capture both the co-movement and the delay in time. 

In our framework, an underlying process of common mortality trend (CMT) is specified for two 
populations at possibly different stages in their journeys of the mortality development to 
characterize the commonality in the evolution of human societies. For the purpose of 
illustration, we focus on two specific formulations, denoted as CMT-ACF and CMT-CBD (Cairns-
Blake-Dowd) models respectively corresponding to the ACF model and the two-population 
version of CBD model in Cairns et al. (2006) (i.e., model M5 in Cairns et al. (2009)). As one of the 
main contributions of the paper, we exploit the bivariate-population CMT model as a base 
learner and develop a computationally friendly framework which effectively borrow 
information from multiple populations for the prediction of a target population. The framework 
is based on an innovative application of the model averaging idea from statistics, where 
bivariate-population models are developed between the target population and each population 
from a candidate pool, and a subset of these bivariate-population models are selected and 
aggregated to predict mortality for the target population. 

We apply our model averaging prediction method to mortality data of 24 populations of both 
genders from the Human Mortality Database (HMD), which is available on the website 
https://www.mortality.org/ in two separate empirical studies. In the first empirical study, we 
take the CMT-ACF model as the base learner and apply our method for predicting mortality 
rates of ages 0-100. In the second empirical study, we take the CMT-CBD model as the base 
learner because we aim at predicting mortality rates only for senior ages 55-90 and it is well 
known that the CBD model has the superiority in prediction accuracy for senior ages compared 
with other models. Both empirical studies confirm that our proposed CMT-based method yields 
substantially better prediction results than several benchmark models considered in our study. 
Besides, the framework also provides useful insights in terms of interpreting current mortality 
data through the introduction of parameter, denoted as . This parameter, designed to 
characterize the “stage of evolution” of one population to the other in the CMT process, can 
capture the relative mortality level of the target population in most cases under our empirical 
studies. The degree of correlation between the  value and the mortality level depends on the 
degree of dominance by the CMT process over the population-specific effects in the CMT 
model. When the CMT process dominates the mortality development, we expect a strong 
negative correlation between the  value and the mortality level of a target population and 
vice versa. We design a Relative Scale (RS) measure to assess the degree of dominance by the 
common trend process in a CMT model. We observe a strong negative correlation between the 
∆t value and mortality level (proxied by the aggregate logarithmic mortality rates over all the 
involved ages and the time period of training data) over populations with a small RS measure. 

https://www.mortality.org/
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In particular, the RS measure is small for all the CMT-CBD models involved in the second 
empirical study, and a Pearson correlation coefficient between the  value and the mortality 
level is observed as high as -0.896 and -0.971 for female populations and male populations 
respectively. Therefore, the  parameter in the CMT-CBD model provides a simple but 
informative index to describe how many years one population is in advance of the other in their 
mortality development. 

The rest of the paper proceeds as follows. Section 2 provides a general setup of our bivariate-
population CMT model and describes two specific cases of the model. Section 3 introduces 
various model averaging procedures which we develop for mortality prediction. Section 4 
presents empirical studies of our proposed mortality prediction method and compares with 
benchmark models considered in our study by analyzing data from the HMD. Finally, Section 5 
provides concluding remarks and some discussions on future research. 

2 Bivariate-population CMT Model 
2.1 General Model Setup 

 

Some further elaboration of the CMT model is given below: 

(1) and (2) highlights the salient feature of the 
CMT model and amounts to the key assumption of the model. The underlying CMT 
process drives the mortality development of both populations while they may be at 
different stages in their own journeys. 

  



 

6 
 

c) The CMT model specified in equations (1) and (2)

 
Li and Lee (2005) and the CBD model (Model M5 in Cairns et al., 2009)

e) In the literature, multivariate time series models, such as the VAR model or VECM 
model, have been introduced to model the joint evolution of mortality for multiple 
populations over time; see, e.g., Zhou et al. (2014). The cross-correlation between two 
populations’ overall mortality improvement is implicitly modelled and captured by 
corresponding parameters in a VAR/VECM model. In contrast, our CMT model captures 
the co-movement in a different way. It explicitly decomposes the overall mortality 
improvement into an underlying common process shared by both population and a 
specific process for each population. Meanwhile, we provide a transparent view on 
which population is at a more developed stage of morality than the other in the model 
through the parameter . Based on our empirical study (see Section 4), the calibrated 
value of  characterizes the relative position in mortality development across 
populations well. 
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2.2 CMT-ACF Model 
2.2.1 Specification of CMT-ACF Model 

 
in the CMT model in equations (1) and (2), we have the following model specification: 

 
The above specification yields a similar model to a bivariate-population ACF model in Li and Lee 
(2005)

(3) and (4)

are imposed to avoid issues of unindentifiability for the model, where 

 

if  ≥ 0; 

otherwise. 

2.2.2 Calibration and Extrapolation of CMT-ACF Model 

 2.4
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 over (T, T — ], it only contains data from the reference (j = 2). 

 1

 and  

4. For each j = 1, 2, we apply a SVD procedure further to  to get and 

. 

5. Fit each of the obtained sequences K(t) and kj (t) with an AutoRegressive Integrated 
Moving Average (ARIMA) model. In our study, we apply the auto.arima function 
from the R package forecast to each sequence. 

  



 

9 
 

6. For prediction, we follow the conventional extrapolation paradigm. We obtain 
predictions for K(t) and k1(t) over future years t and then use equation (3) to obtain 
forecasts by taking the white noise terms as zero. The prediction of k1 (t) is obtained 
by projecting its established time series model into the future. The prediction of K(t) 
is obtained either from the calibration step or by an extrapolating procedure, 
depending on value of . If ≥ 0, the aggregated data from Step 1 span over the 
time horizon [— , T] and in this case, the prediction of K(t) for any future year t > T 
should be obtained via extrapolating the established time series model. In contrast, 
if  < 0, the aggregated data from Step 1 span over the time horizon [0, T — ], 
where we note T —  > T. In this case, we directly input the calibrate values of K(t) 
obtained in Step 2 into equation (3) for mortality forecasts over the period [T, T — 

], and apply the extrapolation procedure for prediction beyond time T — . 

2.3 CMT-CBD Model 

(1) and (2) with 

 

 

where , and  Each marginal of the 
above model has the same structure as the original CBD model in Cairns et al. (2006), or model 
M5 in Cairns et al. (2009) with  and  and no static age 

function nor cohort effect. We refer to the specification in equations (6) and (7) as a CMT- CBD 
model. This specification extends the CBD model to the bivariate-population scenario where 

the age-period term  is shared by both populations but with a difference in their 
development stages. 
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2.3.2 Calibration and Extrapolation of CMT-CBD Model 

 2.4. The model extrapolation can be obtained 
by following the same Steps 5 and 6 for the CMT-ACF model as described in Section 2.2.2. 
Below we describe the procedure of calibrating the CMT-CBD model with a fixed . It involves 
the following steps: 

 
where 

 
3. From equations (6) and (7), we have the following two expressions: 

4. We calibrate the  and  sequences by plugging the forms of  in (9) and 

(10) into the log-likelihood (8) and then maximizing it with respect to and  
using the Newton-Raphson iterative procedure. 

2.4 Choice of  

expit 

expit 
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 in the CMT-ACF model and  in the CMT-CBD model, using validation 
data from both the target and the reference populations. 

In the analysis of HMD in Section 4

 4, the CMT model is applied to many pairs out of 30 
populations and we universally adopt the set {-10, -9, . . . , 9, 10} as the candidate set for  to 
make the prediction procedure fully driven by data instead of our subjective judgment on the 
development stages of populations. 

3 Model Averaging Method for Prediction 
As an application, we fit the CMT model with HMD and study its potentials in enhancing the 
performance of mortality prediction. The HMD contains data of human mortality rates for 47 
countries or regions. 

The proposed CMT model in Section 2 

In view of the computational hurdle in calibrating a multi-population CMT model, we instead 
propose a model averaging procedure for borrowing information. The model averaging 
procedure allows us to exploit the proposed bivariate-population CMT models as the building 
blocks and form an enhanced prediction rules with information borrowed from multiple 
populations. More specifically, given a target population and a pool of reference populations, 
we build bivariate-population CMT models between the target population and each reference 
population in the pool. Then, we obtain extrapolative results (i.e., prediction) on future 
mortality rates for the target population out of each bivariate-population model and form a 
final prediction by averaging the extrapolative results from these bivariate-population CMT 
models. 

The primary idea of model averaging is to reduce the prediction uncertainty by aggregating 
predictive results from multiple predictive models. This idea has been widely adopted in the 
machine learning community. The following are several specific strategies in utilizing the model 
averaging idea. The last strategy, RankAvg, provides an adaptive selection of individual 
predictive rules used in the model averaging and is expected to have a robust performance over 
different numerical settings. The other three strategies are proposed for comparison. 

• Simple Average (SimAvg): This is the most naive strategy where we take all 
accessible information into account. Each reference population in the pool is 
used to build a bivariate-population CMT model with the given target population. 
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The final mortality prediction for the target population is just the simple average 
of predictions from all of these bivariate-population models. 

• Average Based on Geographic Information (GeoAvg): We use geographic 
proximity as exogenous information to pre-specify groups. For a given target 
population, the final prediction is the average of predictions from the CMT 
models that are calibrated with reference populations within the same 
geographic group. 

• Average Based on Clustering Results (KmeansAvg): This is a data-driven strategy 
using, for example, cluster analysis, to find populations with similar mortality 
characteristics (see Hatzopoulos and Haberman (2013)). We apply a clustering 
algorithm to group a given set of populations. The final prediction for the target 
population is obtained as the average of the predictions from the bivariate CMT 
models built between the target and each of the reference population located in 
the same cluster as the target stays. 

(2.4) for the choice of . We 
next take the average of predictions from the CMT models that yield smallest 
SSEs on the same validation data set and use it as the prediction for the mortality 
of the target population. The prediction results certainly depend on the number 
of top CMT models that we use in the average, which is decided by a validation 
procedure. 

4 Empirical Analysis 
In this section, we empirically evaluate the performance of our proposed prediction methods 
via analysis of the HMD and compare them to several classic benchmark models. In Section 4.1, 
we describe the choice of populations we use in our analysis. In Section 4.2, we conduct a study 
on the performance of model averaging based on the CMT-ACF models and consider the 
mortality prediction for a full range of ages 0-100. In Section 4.3, we switch our focus of analysis 
to the mortality prediction for senior age group, ages 55-90, and study the model averaging 
strategies based on the CMT-CBD models since the CBD model is known for its superior 
performance in characterizing the mortality development for seniors. In both studies, we 
provide the predictions for the combined target (total population) and the gender-specific 
target (female and male populations). 
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4.1 Data Description 
We start from Diao et al. (2020)

According to Brainerd and Cutler (2005), demographic disasters in the form of sharply rising 
death rates happened among several member countries of the former Soviet Union. As we have 
noticed that populations may demonstrate different types of development patterns over time 
sometimes and lead to violations of the assumption that commonality trend exists among 
populations across time, we want to conduct pre-analysis for the guidance of population 
choices. 

We first illustrate the age-aggregated logarithmic mortality sequence from each of the 30 
populations on the left panel of Figure 1. We then conduct a k-means cluster analysis to detect 
structural dissimilarity among sequences of the age-aggregated logarithmic mortality. The k-
means cluster procedure is designed to exclude the effect of mortality level on the dissimilarity 
among different populations. Below are the details of the k-means procedure: 

2. We then use multi-dimensional scaling (MDS) as a tool to transform the matrix D into 
2-dimension. According to Cox and Cox (2008)

3. A k-means cluster analysis is then conducted on the transformed output of MDS. 

It is worth noting that the variance is used in the above k-means procedure so that the disparity 
in mortality level would not contribute to the dissimilarity across different populations. The 
results of clustering are illustrated on the right panel of Figure 1. From Figure 1, we can see that 
most of the former member countries from the Soviet Union have a different mortality 
development pattern compared with the others, and they lie in a separate cluster (in blue) far 
away from the others (in red). Since the “outlier” populations share little commonality with the 
remaining populations, we exclude data from Belarus, Bulgaria, Latvia, Lithuania, Russia and 
Ukraine from our study, leaving us only with mortality data available from 1970 to 2010 from 
24 populations as listed in Table 1, with their geographic group pre-specified as in Diao et al. 
(2020).  
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Figure 1: Clustering results of age-aggregated logarithmic mortality rates based on MDS (from 
top to bottom: female and male populations) 

  

  
 

4.2 Empirical Study with the CMT-ACF Model 
In this empirical study, we investigate the performance of the model averaging method with 
the CMT-ACF models as the building blocks. We study CMT-ACF models under various model 
averaging strategies and compare their performance with the classic ACF models in predicting 
the mortality rates of ages 0-100. 

4.2.1 Prediction Models 

In this empirical study, we take each of the 24 populations in Table 1 as the target and obtain 
its predicted value through one of the model averaging strategies as proposed in Section 3. 
More specifically, for a given target, we develop a bivariate CMT model with each of the 
remaining 23 populations, resulting 23 prediction rules. The model averaging method takes the 
predicted values generated from all or a subset of these 23 prediction rules and compute an 
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average as the final prediction. We repeat the model formulation, model averaging and 
prediction for each of the 24 populations in Table 1. We repeat the analysis over the 24 
populations for each gender (female and male) separately.  

Table 1: 24 populations from HMD and their pre-specified geographic groups 

Target Population Geographic Group Target Population Geographic Group 

Australia Oceania Netherlands West Europe 

Austria West Europe New Zealand Oceania 

Japan Asia Norway Scandinavia 

Belgium West Europe Poland East Europe 

Scotland Great Britain Portugal South Europe 

Canada North America U.S.A. North America 

Czech Republic East Europe Slovakia East Europe 

Denmark Scandinavia Spain South Europe 

Finland Scandinavia Sweden Scandinavia 

France West Europe Switzerland West Europe 

Hungary East Europe Taiwan Asia 

Italy South Europe England & Wales Great Britain 

The four proposed averaging strategies in Section 3 are now embedded with CMT-ACF model 
and labeled as follows: 

• CMT-ACF-SimAvg: The final prediction is a simple average of predicted values from all 
of the 23 bivariate CMT-ACF models. 

• CMT-ACF-GeoAvg: The final prediction is an average of predicted values from the 
CMT-ACF models built with the reference from the same geographic region as the 
target; see Table 1 for the geographic grouping information. 

• CMT-ACF-KmeansAvg: A k-means clustering algorithm (with 8 clusters and 1,000 
independent random initializations) is applied to the logarithmic mortality rates of 
the 30 populations. This yields 8 clusters of populations. The final prediction is an 
average of the predicted values from the CMT-ACF models with the reference 
population from the same cluster as the target population. 

• CMT-ACF-RankAvg: The final prediction is an average of predicted values from the s 
“top-ranked” CMT models. The value s is determined in the following way: 

1. We rank the 23 bivariate-population CMT models according to the validation 
SSEs for logarithmic mortality rates in an ascending order; 

2. We form a prediction rule by averaging over the first u CMT modes from the 
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ordered list, for u = 1, 2,..., 23. 

3. We calculate the validation SSE for each of the 23 prediction rules formed in 
the preceding step and take s as the one that yields the smallest validation 
SSE. 

Remark 1. (a) It is also worth noting that the KmeansAvg strategy is an application of the 
simple k-means clustering method to the logarithmic mortality rates. Unlike to the 
k-means clustering based on a MDS procedure, the k-means clustering results in 
the KmeansAvg strategies are affected by the mortality level of each population. In 
other words, similarity in mortality level is one of the factors (in addition to the 
development patterns of mortality) that are conducive to assigning two 
populations into the same cluster. 

(b) Among the above four averaging strategies, we expect GeoAvg and KmeansAvg 
generally not to perform as well as SimAvg and RankAvg in the current empirical 
study for the following reasons. First, our preanalysis in Section 4.1 has excluded 
those “outlier” populations from the analysis. Those 24 populations remaining in 
the analysis show similar patterns of mortality development and it tends to be the 
case that a CMT model is viable for each pair of them. Second, both the GeoAvg 
and the KmeansAvg strategies only borrow information from a small subset of the 
population pool, and do not make use of any information out of the subsets that 
could be helpful. This contradicts the core idea of our CMT model to allow 
borrowing information from populations at disparate mortality development 
stages in addition to those at similar development stages. 

For comparison, we consider the following benchmark methods: 

• Lee-Carter: The Lee-Carter model is fitted to each population separately. The sequence 
of kt obtained from a SVD procedure is fitted using the auto.arima function from the R 
package forecast to search for a suitable ARIMA model. 

• ACF∙AIO: The ACF model is fitted to the 24 populations jointly. 

• ACF∙GeoInfo: The ACF model is fitted to each geographic groups in Table 1. 

• ACF∙kmeans: The ACF model is fitted to each cluster from the k-means clustering 
algorithm. 

These benchmarks are calibrated using training set (1970-2002) and the resulting models are 
extrapolated to the testing period (2003-2010) for mortality prediction. 
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4.2.2 Prediction Performance 

Evaluation Based on Test SSEs 

 

 2. Generally speaking, 
Table 2 shows that our proposed CMT-based prediction models, in particular CMT-ACF∙RankAvg 
and CMT-ACF∙SimAvg, stably generate smaller test SSEs and substantially outperform the 
benchmark models. The performance of CMT- ACF·GeoAvg and CMT-ACF∙KmeansAvg, though 
not performing as well as the other two CMT models, is competitive with the benchmark 
methods. 

Table 2: Summary statistics of test SSEs of 24 female populations and 24 male populations 
comparing the prediction performance of CMT-ACF models versus benchmark methods 

 1st Quartile Median Mean 3rd Quartile 

Female Population 

Lee-Carter 19.24 45.11 44.04 63.86 

ACF∙AIO 20.49 44.91 43.76 62.09 

ACF∙GeoInfo 20.95 45.49 42.96 63.77 

ACF∙kmeans 18.99 45.77 41.63 59.19 

CMT-ACF∙SimAvg 16.59 39.65 37.78 54.00 

CMT-ACF∙GeoAvg 19.43 38.21 38.95 56.67 

CMT-ACF∙KmeansAvg 15.11 43.79 39.51 59.47 

CMT-ACF∙RankAvg 15.04 40.84 37.34 54.73 
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Male Population 

Lee-Carter 28.28 40.85 49.07 65.29 

ACF‧AIO 28.28 39.54 46.90 65.76 

ACF∙GeoInfo 23.75 37.43 41.41 64.02 

ACF∙kmeans 24.35 36.70 42.31 58.82 

CMT-ACF∙SimAvg 23.00 33.67 36.66 56.69 

CMT-ACF∙GeoAvg 26.74 35.76 37.97 57.63 

CMT-ACF∙KmeansAvg 24.80 35.82 39.69 58.38 

CMT-ACF∙RankAvg 24.40 31.61 35.58 56.11 

Figure 2 shows the boxplots of test SSEs of 24 populations obtained under various prediction 
models. Figure 2 contains two subfigures corresponding to the results for the female and male 
populations from left to right, respectively. In each subfigure, the order of the boxplots follows 
four classic benchmark models (in dark grey), Lee-Carter, ACF∙AIO, ACF∙GeoInfo, and 
ACF∙kmeans, and four CMT models (in light grey), CMT- ACF∙SimAvg, CMT-ACF∙GeoAvg, CMT-
ACF∙KmeansAvg, and CMT-ACF∙RankAvg. As shown in Figure 2, the CMT-based models 
consistently yield smaller median, fewer outliers, and smaller variation of the resulting test 
SSEs. The improvement is more substantial for CMT-ACF∙RankAvg and CMT-ACF∙SimAvg. The 
results reinforce our conclusion that the CMT-based models are capable to achieve superior 
performance in mortality forecasting. Furthermore, the relative underperformance of CMT-
ACF∙GeoAvg and CMT- ACF∙KmeansAvg compared with CMT-ACF∙RankAvg and CMT-ACF∙SimAvg 
reinforces our comments in Remark 1. 

Figure 2: Boxplots of test SSEs of 24 female populations and 24 male populations (from left to 
right) comparing the prediction performance of CMT-ACF models versus benchmark ACF 

models 
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Evaluation Based on One-sided Diebold-Mariano Tests 

We also conduct formal hypothesis tests to determine if the test SSE of a given model is 
statistically significantly smaller than that of another. The one-sided Diebold-Mariano (DM) test 
is regarded as one commonly used statistical hypothesis testing method in the field of forecast 
comparison; see Diebold and Mariano (1995) and Harvey et al. (1997)

Table 3 reports the number of wins for one model from the group of CMT models over another 
from the group of benchmark models. Each cell of the table contains two integers recording the 
comparison results of the model in the row versus the one in the column. The first integer is the 
number of wins of the model in the row, and the second integer is the number of wins of the 
model in the column. For example, “(23, 1)” in the first column and the fourth row in the panel 
of Female Population means that the CMT-ACF∙RankAvg model wins for 23 times over the Lee-
Carter model and the Lee-Carter model wins the CMT-ACF∙RankAvg model only once among all 
of the 24 comparisons for female populations. As Table 3 clearly indicates, the CMT-based 
models perform significantly better than benchmark models in terms of the number of wins. 
The superiority of CMT-ACF∙SimAvg and CMT-ACF∙RankAvg is evident when these models are 
compared with all of the benchmark models considered in our study since these two models 
are capable to win frequently among all 24 comparisons in all data scopes (female or male 
population). Although less convincing results are obtained when the CMT-ACF∙GeoAvg and 
CMT-ACF∙KmeansAvg are applied, they are sufficiently competitive to the benchmark methods. 
Furthermore, the outperformance of CMT-ACF-SimAvg and CMT-ACF∙RankAvg over CMT-
ACF∙GeoAvg and CMT-ACF∙KmeansAvg confirms again on our previous comments regarding 
their relative performance in Remark 1. 
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Table 3: Number of wins for comparisons between the CMT-ACF model and the benchmark 
ACF model based on a pairs of one-sided DM tests: In each cell, the first integer indicates the 
number of wins of the model in the row over the model in the column out of 30 comparisons 
and the second integer is the number of wins of the model in the column over the one in the 

row. 

 Lee-Carter ACF-AIO ACF-GeoInfo ACF-kmeans 

Female Population 

CMT-ACF∙SimAvg (23, 1) (22, 1) (17, 0) (16, 3) 

CMT-ACF∙GeoAvg (13, 0) (15, 1) (13, 3) (12, 4) 

CMT-ACF∙KmeansAvg (15, 1) (15, 2) (15, 3) (11, 3) 

CMT-ACF∙RankAvg (21, 2) (19, 2) (16, 1) (14, 2) 

Male Population 

CMT-ACF∙SimAvg (24, 0) (20, 0) (16, 4) (15, 4) 

CMT-ACF∙GeoAvg (16, 3) (13, 3) (10, 9) (11, 7) 

CMT-ACF∙KmeansAvg (19, 0) (17, 0) (10, 5) (10, 9) 

CMT-ACF∙RankAvg (24, 0) (21, 0) (14, 3) (17, 3) 

 4 . As discussed in Section 2

 4 
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Target Female Male Target Female Male 

Australia 0.13 0 New Zealand -1.70 -0.87 

Austria -1.22 -1.91 Norway -2.00 -0.83 

Belgium 0.26 0.13 Poland 0.17 0.70 

Canada 3.09 0.83 Portugal -0.09 -0.39 

Czech Republic -1.35 -1.96 Slovakia 0.57 -0.61 

Denmark -0.83 0 Spain 0.48 -0.70 

Finland -0.39 -0.78 Sweden 1.65 0.39 

France 0.74 0.74 Switzerland -1.30 -1.61 

Hungary -1.52 -1.74 Taiwan -1.52 -1.65 

Italy 0.04 1.35 England & Wales 1.91 2.91 

Japan 2.83 4.61 Scotland -1.70 -1.96 

Netherlands 0.17 1.43 U.S.A. 1.57 1.91 

 4 and 5 

(1)-(2)
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where the mean operator is applied for the corresponding sequence over the time period 
involved in the CMT model, and 

 

 3 

 3 are symmetrical 
since we have  by the definition of the RS measure. 

 
3,

 4 and 5,
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Figure 3: Values of Relative Scale based on CMT-ACF models. Left panel: female data. Right 
panel: male data. 

  
4.3 Empirical Study with the CMT-CBD Model 
In this empirical study, we investigate the prediction performance of the model averaging 
method for seniors with an age ranging from 55 to 90. The CBD-type models are known as an 
improvement of the Lee-Carter/APC-type models for modelling and predicting the mortality of 
a senior group because of their relatively simple log-linear structure of the mortality curve and 
parsimonious age effects, see Cairns et al. (2009), Cairns et al. (2011). We use the CMT-CBD 
models as building blocks in the model averaging method considering grouping strategies 
proposed in Section 3, and compare their prediction performance with the classic CBD model 
(Cairns et al., 2006), also known as model M5 in Cairns et al. (2009). 

4.3.1 Prediction Models 

We consider the same four model averaging strategies as described in Section 3, which are now 
used with CMT-CBD models and labelled as follows: 

• CMT-CBD∙SimAvg: The final prediction is an average of predicted values from all the 23 
bivariate-population CMT-CBD models. 

• CMT-CBD∙GeoAvg: The final prediction is an average of predicted values from the 
CMT-CBD models built with a reference from the same geographic group as listed in 
Table 1. 

• CMT-CBD∙KmeansAvg: A k-means cluster analysis with 8 clusters and 1,000 
independent initialization is done as that for the CMT-ACF∙KmeansAvg method in 
Section 4.2.1. The final prediction is an average of the predicted values from the CMT-
CBD models built with a reference from the same cluster. 

• CMT-CBD∙RankAvg: The final prediction is an average of predicted values from some 
“top-ranked” CMT-CBD models which are chosen in the same manner as those 
selected for the CMT-ACF∙RankAvg method described in Section 4.2.1. 
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(a) γ = ∞, Corr = - 0.397 (b) γ = 1, Corr = - 0.506 

  

(c) γ = 0.5, Corr = - 0.560 (d) γ = 0.25, Corr = - 0.671 
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Figure 5: Male Data: Relationship between the mean value of  and the relative mortality 
level based on CMT-ACF models with different threshold values of γ 

  

(a) γ = co, Corr = - 0.478 (b) γ = 1, Corr = - 0.555 

  

(c) γ = 0.5, Corr = - 0.772 (d) γ = 0.25, Corr = - 0.793 
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Remark 2. Regarding the above four averaging strategies applied to the CMT-ACF models in the 
empirical study of the preceding section, we have observed that KmeansAvg and GeoAvg do not 
perform as well as SimAvg and RankAvg, and we have explained a reason for this in Remark 1. 
We still expect RankAvg to work well for the CMT-CBD models in the current empirical analysis 
since this particular averaging strategy is fully data-driven and adaptive. However, the reason 
for the outperformance of SimAvg strategy for the CMT- ACF models stated in Remark 1 no 
longer firmly stands for the current empirical study with the CMT-CBD models. As we have 
stated in Remark 1, the primary reason for the SimAvg to outperform the other strategies in our 
previous empirical analysis with the CMT- ACF models is the preanalysis we had conducted in 
Section 4.1 that excluded several former Soviet Union populations for their disparate mortality 
develop patterns. The dissimilarity in the preanalysis is based on all of the ages 0-100. In 
contrast, in the current empirical study, we only focus on senior ages 55-90 and the k-means 
clustering in the preanalysis may not remain the same if we focus on the senior ages 55-90 only. 
In short, there is no transparent reason that a joint CBD model of a target population with each 
of the other 23 populations would bring more information than noise to enhance the prediction 
of mortality for the target population, which creates a risk of using the simple averaging over all 
of the involved populations. 

For comparison, we consider a classic CBD model. 

• CBD: The single-population CBD model is fitted to the training mortality data of each 
individual population independently. 

4.3.2 Prediction Performance 

Evaluation Based on Test SSEs 

As in the empirical study for the CMT-ACF model, we also use test SSEs as a measure of 
prediction accuracy. To compare the prediction performance of the prediction models listed in 
the preceding subsection, we calculate the test SSE as the summation of squares between the 
difference between the logit function of the probability  and its predicted counterpart 
over the age range 55-90, and the test period, years 2003-2010; i.e., 

 

where is the probability that an age-x individual from the target population dies 
between year t and t +1 given the individual is alive at time t, and  is its prediction. 

Table 5 summarizes the prediction performance of the various models described in Section 
4.3.1. Table 5 shows that the improvement of the CMT-CBD models over the classic CBD model 
is not as significant as the CMT-ACF models over benchmark ACF models as reported in Table 2. 
The CMT-CBD∙RankAvg still performs better than the CBD model. Other averaging methods 
demonstrate a less satisfactory performance. This observation is in accordance with our 
previous comments in Remark 2. 
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Table 5: Summary statistics of test SSEs of 24 female populations and 24 male populations 
comparing the prediction performance of CMT-CBD models versus the CBD model 

 1st Quartile Median Mean 3rd Quartile 

Female Population 

CBD 3.61 5.87 7.37 11.67 

CMT-CBD∙SimAvg 5.13 7.96 10.28 13.32 

CMT-CBD∙GeoAvg 4.60 6.50 8.76 11.95 

CMT-CBD∙KmeansAvg 3.97 5.76 7.61 11.70 

CMT-CBD∙RankAvg 3.18 5.76 6.94 10.32 

Male Population 

CBD 2.32 2.88 3.08 3.63 

CMT-CBD∙SimAvg 2.08 3.04 5.95 4.38 

CMT-CBD∙GeoAvg 2.12 2.60 2.84 3.69 

CMT-CBD∙KmeansAvg 2.22 2.54 2.84 3.56 

CMT-CBD∙RankAvg 2.04 2.67 2.85 3.38 

Evaluation Based on One-sided Diebold-Mariano (DM) Tests 

To conduct a formal comparison in prediction performance between the CMT-CBD models and 
the CBD model, we also conduct the DM tests in the same manner as we have done for the 
empirical study with the CMT-AFT models in Section 4.2.2. The results in Table 6 suggest that 
CMT-CBD-RankAvg performs significantly better than the benchmark CBD model for both the 
gender-specific populations. CMT-CBD∙GeoAvg significantly outperforms the CBD model for 
male populations and CMT-CBD∙KmeansAvg significantly outperforms the CBD model for 
female populations. Among the CMT-CBD models, the simple averaging strategy only performs 
slightly better than the CBD model for both female and male population. Nevertheless, the 
well-designed “Rank and Average” method produces superior performance.  
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Table 6: Number of wins for comparisons between a CMT-CBD model and the CBD model 
based on a pairs of one-sided DM tests: In each cell, the first integer indicates the number of 

wins of the model in the row over the model in the column out of 24 comparisons and the 
second integer is the number of wins of the model in the column over the one in the row. 

 CBD 

 Female Male 

CMT-CBD∙SimAvg (10, 7) (12, 9) 

CMT-CBD∙GeoAvg (7, 8) (12, 6) 

CMT-CBD∙KmeansAvg (11, 5) (6, 5) 

CMT-CBD∙RankAvg (11, 3) (10, 5) 

4.3.3 Interpretation of  Values in the CMT-CBD Models 

For each target population, we have 23  values resulted from the 23 bivariate CMT- CBD 
models that we have calibrated between the target and a reference from the rest 23 

populations. We calculate the mean of the 23  values for each target population and report 
them in Table 7. 

We also provide an analysis on the relationship between the calibrated  values in the 
bivariate CMT-CBD models and the mortality development level as we have previously 

conducted in Section 4.2.3 for the CMT-ACF models. We recall that the degree to which the  
value reflects the relative mortality level of involved populations in a CMT model depends on 
how much the common trend process contributes to the mortality development compared 
with the population-specific effects. In equation 12, we defined the RS measure to capture the 
degree of dominance by the common trend process over the population-specific effects. We 
apply the same RS measure in the current empirical study for the CMT-CBD models. The 
resulting RS values for all of the involved pairs of populations are demonstrated in Figure 6. The 
figure indicates that all the RS values are quite small. Thus, the common trend process 
dominates for the development of mortality in all the involved bivariate-population CMT-CBD 

models, and we should expect a high correlation between the  value and the mortality level 
of a population. 

We provide the scatter plots of the mean of age-aggregated logarithmic mortality rates versus 

the mean of  values for all the 24 target populations in Figure 7. Figure 7 exhibits an obvious 

negative relationship between the mean value of  and the mortality level. Populations with 

lower mortality tend to have a positive mean value of , and those with higher mortality tend 

to have a negative mean value of .   
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Table 7: Mean of 23  values for each target population based on the CMT-CBD model 

Target Female Male Target Female Male 

Australia 4.48 4.43 New Zealand -0.13 2.22 

Austria 1.17 -0.83 Norway 1.65 2.61 

Belgium 1.65 -1.13 Poland -7.17 -7.78 

Canada 3.91 5.17 Portugal -0.04 -1.87 

Czech Republic -7.30 -8.39 Slovakia -6.26 -8.57 

Denmark -6.04 -2.74 Spain 8.26 5.43 

Finland 1.48 -2.70 Sweden 0.91 6.43 

France 7.65 4.13 Switzerland 7.04 6.57 

Hungary -7.91 -9.48 Taiwan -4.96 -0.91 

Italy 6.00 3.87 England & Wales -2.39 -0.39 

Japan 9.48 8.65 Scotland -6.04 -5.65 

Netherlands -3.17 -0.30 U.S.A. -2.26 1.22 

The Pearson correlation coefficients between the two variables for the female population and 
male populations are as high as -0.8958 and -0.9706 respectively, suggesting a very strong 
negative linear correlation. These observations confirm the intended interpretation of the 

parameter  in our bivariate CMT-CBD models: a positive and large value implies the advance 
of the target population in mortality development relative to the reference population, and a 
negative value implies a delay of the target population in mortality development. 

Moreover, since the CMT is the major driving force of mortality development for both 
populations in every bivariate-population system involved in the current empirical study as 

validated by the observed small RS values, the value of the  also quantifies the number of 
years of difference in mortality development between the target population and the reference 

population. For instance, the calibrated  value between the US male population (as the 
target) and the Canadian male population (as the reference) is -6, meaning that the Canadian 
male population is 6 years earlier than the target US male population in terms of mortality 
development stage. We show the age-aggregated logarithmic mortality sequences of the two 
populations in Figure 8 for a graphical illustration of the relationship between the two 
populations. 
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5 Concluding Remarks 
We propose a general and flexible mortality forecasting framework involving building bivariate 
CMT models based on existing bivariate-population mortality models and averaging these 
bivariate models through various strategies. An important advantage of our proposed 
framework is that, by allowing more flexible structure on the timeline, we are able to borrow 
information not only from across populations but also from across time.  

Figure 6: Values of Relative Scale based on CMT-CBD models. Left panel: female data. Right 
panel: male data. 

  
Figure 7: Relationship between the mean value of  and the relative mortality level based 

on CMT-CBD models 

  
(a) Female: Corr = - 0.896 (b) Male: Corr = - 0.971 
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Figure 8: Age-aggregated logarithmic mortality sequences for the US male population and the 
Canadian male population 

 
It provides a practical way to enhance both the accuracy and efficiency of mortality forecast. 
This advantage is further exploited by the introduction of the model averaging idea, which 
helps efficiently reduce prediction errors and provides predictions with accuracy and 
robustness in a computational-friendly way. We conclude from our empirical studies that our 
proposed CMT models using the “Rank and Average” model averaging strategy are capable of 
achieving a superior prediction performance, regardless of whether the main focus of analysis is 
paid to the prediction for the whole age groups or just a senior subgroup, in the total 
population or the gender-specific populations. 

Another advantage of our CMT model framework is that we no longer need to be concerned 
with whether the populations included in the model are in a similar socio-economic condition 
when we attempt to borrow information from other populations for the purpose of mortality 
forecast. Our framework is capable of recognizing useful information and screen out irrelevant 
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noise and thus allowing for a greater degree of flexibility in multi-population mortality 

modelling than the extant models. In addition, the parameter , designed to capture the 
“stage of evolution” for each population in the CMT model, is economically sensible as it 
effectively characterizes the disparity of mortality levels that have been caused by historical 
events and the socio-economic development, across populations in most cases we have 

considered in this study. It is consistent with the intuition that a positive and large value of  
implies a relatively leading position for the target population in mortality development with 
lower mortality level while a delayed position in mortality development for the target 

population is revealed by a negative value of . In addition, when the CMT is the major 
driving force of the mortality development for a bivariate-population systems, the value of the 

 can also quantifies number of years of difference in mortality level of the target population 
compared to the reference population. 

There are many relevant issues spawned by this framework that are worth further exploration. 
Since the model averaging idea brings in both accuracy and robustness with an affordable 
increase in computational demand, we would like to extend the model averaging idea to more 
challenging scenarios where the prediction of mortality rates of a particular age group (i.e., 
infant, teenage, or senior) becomes the goal of a study with richer candidates in the reference 
pool (i.e., allowing to borrow information from specific combination in region, gender, and 
age). To exploit the full potential of the model averaging idea, we will consider more flexible 
and powerful strategies for the calculation of the final prediction: a weighted average based 
scheme will be considered as an alternative to the naive simple average strategy. CMT∙GeoAvg, 
CMT∙KmeansAvg and CMT∙RankAvg select a subset of the developed bivariate CMT models, 
while other fully data-driven selection methods can also be considered. For instance, Diao et al. 
(2020) used a so-called “Deletion/Substitution/Addition” algorithm to automatically select a 
group of populations under the ACF model framework. Developing a selection procedure of the 
CMT models in the same spirit is another direction warranting further research. 
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